一类指数型非线性随机差分方程组解的稳定性分析  

Stability Analysis of Solutions for a Class of Stochastically Perturbed Exponential Type System of Difference Equations

在线阅读下载全文

作  者:佘智凤 廖新元[1] 陈沙沙 金薇 SHE Zhifeng;LIAO Xinyuan;CHEN Shasha;JIN Wei(School of Mathematics and Physics, University of South China, Hengyang, Hunan 421001, China)

机构地区:[1]南华大学数理学院,湖南衡阳421001

出  处:《南华大学学报(自然科学版)》2021年第6期54-59,共6页Journal of University of South China:Science and Technology

摘  要:研究了一个指数型非线性随机差分方程组,并考虑了双随机因素的扰动,利用平衡点的平移变换、Jaccobi线性化、Lyapunov函数法及稳定性理论等得到该模型平衡解渐近均方稳定和依概率稳定的充分条件,并用数值仿真说明了所得结论的正确性。In this paper,asymptotic behavior of a class of exponential type system of difference equations is investigated,taking the random perturbations of doubly stochastic factors into account.Using Jaccobi linearization,Lyapunov function method and stability theory,the sufficient conditions are obtained for stability in probability of both equilibriums of the model.Finally,the theoretical results are supported with numerical simulations.

关 键 词:指数型差分方程 随机干扰 LYAPUNOV函数 渐近均方稳定 依概率 

分 类 号:O241.84[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象