检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西南交通大学机械工程学院,四川成都610031
出 处:《物联网技术》2022年第2期7-11,15,共6页Internet of things technologies
基 金:四川省科技计划项目(2019YFH0096);四川省氢能源与智能汽车重大科技专项(2019ZDZX0028)。
摘 要:当前车辆检测算法仅使用物理特征或几何特征对目标进行分类,特征维度不够丰富导致检测不够准确。基于以上问题,文中提出了一种基于雷达与视觉特征融合的车辆检测方法,同时使用了目标的物理特征与几何特征。雷达特征选用速度、加速度等物理特征,在雷达摄像头数据融合后得到雷达目标点在图像上的感兴趣区域,在感兴趣区域上提取梯度方向直方图特征。计算梯度方向直方图的统计特征作为视觉特征,包括标准差、中位数、平均值。构建输入为雷达与视觉融合特征的神经网络R-V-DenseNet,制作数据集并训练该网络。在测试集上的实验结果证明,R-V-DenseNet相比传统的HOG-SVM方法及单传感器特征检测方法准确率有所提高,检测较为准确。
关 键 词:车辆检测 雷达 机器视觉 梯度方向直方图 数据融合 神经网络
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33