基于BERT的智能问答系统  被引量:4

在线阅读下载全文

作  者:陈旻杰 魏轩 郑莹 周世元 

机构地区:[1]北方工业大学

出  处:《数字技术与应用》2022年第1期161-163,共3页Digital Technology & Application

摘  要:本文结合网络爬虫和深度学习模型研究智能问答技术。文中介绍了BERT的基本内容和特点、Finetuning BERT中的文本词汇生成过程,以及在深度学习模型中引入主题特征的方法和实现。随着大数据时代的到来,每天都有数以亿计的信息存留于互联网,庞大的信息量让人们很难从中获取有价值的信息,如何快速筛选这些有价值的信息是智能问答系统的关键。本文中的答案选择模型采用基于预训练模型BERT微调的答案选择模型,通过分别采取全连接网络,DPCNN网络,BiLSTM网络以及调整不同输入层后,我们发现采用BiLSTM网络模型有较好的效果。在进行系统部署后,通过对文本选择的正确率和响应时间进行对比,均可获得理想的效果。

关 键 词:网络爬虫 连接网络 大数据时代 智能问答 网络模型 输入层 互联网 响应时间 

分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象