检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孟旭 孟坤[1] MENG Xu;MENG Kun(School of Computer Science,Beijing Information Science and Technology University,Beijing 100101,China)
机构地区:[1]北京信息科技大学计算机学院,北京100101
出 处:《计算机技术与发展》2022年第1期111-116,共6页Computer Technology and Development
基 金:国家自然科学基金项目(61502039)。
摘 要:随着手机等便携式智能电子设备的普及,图像已成为最重要的信息载体之一,在新闻、社交及司法等领域发挥着重要作用。在享用电子图像带来便捷性的同时,图像处理工具给不法分子通过篡改电子图像实施诈骗等犯罪活动提供了可能,识别图像来源、辨别图像真伪已成为遏制和惩罚此类犯罪活动的重要技术手段。该文讨论了神经网络在图像源识别中的应用方法,分别将原始图像和图像噪声作为模型输入数据,比较分析了神经网络的分类效果。从依赖数据属性、数据预处理方法以及应用模式等方面进行了实验。通过对实验结果进行分析,发现提取有代表性的图像块以及使用平滑的图像进行实验更有利于图像来源的识别。分别采用笔者建立的数据集(10个相机)和vision数据集(35个相机)作为分析数据集,图像来源分类的实验结果表明相对于简单估计相机传感器模式噪声的方法准确率提升了35%,图像来源判断的实验结果准确率达到了95%。With the popularization of portable smart electronic devices such as mobile phones,images have become one of the most important information carriers,playing an important role in news,social and judicial fields.While enjoying the convenience of electronic images,image processing tools make it possible for criminals to commit fraud and other criminal activities by tampering with electronic images.Identifying the source of the image and distinguishing the authenticity of the image has become an important technical means to deter and punish such criminal activities.We discuss the application method of neural network in image source identification,and compare and analyze the classification effect of neural network for the original image and image noise as model input data.Experiments are carried out in terms of dependent data attributes,data preprocessing methods,and application modes.According to the analysis of the experimental results,the extraction of overlapping image blocks and the use of smooth images for experiments are more conducive to the identification of image sources.By using our own dataset(10 cameras)and vision dataset(35 cameras)as the analysis data sets,the experimental results of image source classification show that the accuracy of the method of simply estimating the camera sensor pattern noise is improved by 35%.The accuracy of the experimental results of image source judgment reached 95%.
关 键 词:图像来源识别 噪声提取 神经网络 特征提取 传感器模式噪声
分 类 号:TP301[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200