检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:田晓婧 谢颖华[1] TIAN Xiao-Jing;XIE Ying-Hua(School of Information Science and Technology,Donghua University,Shanghai 201620,China)
机构地区:[1]东华大学信息科学与技术学院,上海201620
出 处:《计算机系统应用》2022年第1期190-194,共5页Computer Systems & Applications
摘 要:在实现推荐的过程中,用户对项目的浏览和关注的时间顺序是推荐算法中重要的数据信息,同一用户在不同时间对项目的喜好不同对推荐结果也有着一定的影响.本文在神经协同过滤模型的框架下,提出将长短期记忆网络和广义矩阵分解进行融合,同时捕捉用户的短期偏好和长期偏好.利用长短期记忆网络对时序数据的强拟合能力,学习用户的短期偏好信息,捕捉序列的长依赖关系,通过广义矩阵分解学习用户的长期偏好信息,从而优化推荐算法,提高推荐性能.通过MovieLens-1M数据集进行试验后,结果表明,本文提出的新模型在收敛速度和推荐性能方面都有提升.In the process of implementing recommendations, the browsing order of users is important information for the recommendation algorithm. The same user’s different preferences for items at different times also affect the recommendation results. Under the framework of the neural collaborative filtering model, this study proposes to integrate long short-term memory networks with generalized matrix factorization and capture both the user’s long-term and shortterm preferences. The new model utilizes the strong fitting ability of long short-term memory networks to time series data to learn the user’s short-term preference and capture the long dependence relationship of the sequence. The user’s longterm preference is learned through generalized matrix factorization. The recommendation algorithm is thereby optimized,and the recommendation performance is improved. Experiments are carried out on the Movielens-1 M dataset and the results show that the new model has a higher convergence rate and better recommendation performance.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30