检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李睿 李春明[2] 苏杰[2] 陈亮[3] 秦兆博 边有钢 LI Rui;LI Chunming;SU Jie;CHEN Liang;QIN Zhaobo;BIAN Yougang(School of Mechanical Engineering,Beijing Institute of Technology,Beijing 100081,China;China North Vehicle Research Institute,Beijing 100072,China;State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body,Hunan University,Changsha 410082,China;State Key Laboratory of Automotive Safety and Energy,Tsinghua University,Beijing 100084,China)
机构地区:[1]北京理工大学机械与车辆学院,北京100081 [2]中国北方车辆研究所,北京100072 [3]湖南大学汽车车身先进设计制造国家重点实验室,长沙410082 [4]清华大学汽车安全与节能国家重点实验室,北京100084
出 处:《清华大学学报(自然科学版)》2022年第1期133-140,共8页Journal of Tsinghua University(Science and Technology)
基 金:国家自然科学基金创新研究群体项目(51621004);国家自然科学基金资助项目(52002126);湖南省重点研发计划项目(2019GK2161)。
摘 要:由于履带与地面之间的相互作用力复杂,因此为履带车辆建立精确的模型较为困难。该文提出了一种基于轨迹预测补偿的双重无迹Kalman滤波(DUKF)的履带车辆滑动参数实时估计方法。上层无迹Kalman滤波(UKF)利用历史轨迹信息对滑动参数进行初步估计,将初步估计的滑动参数输入基于履带车辆瞬时转向中心(ICR)的车辆模型进行轨迹预测,结合轨迹预测相对位置的残差,通过下层UKF对初步估计的滑动参数进行补偿。基于RecurDyn与MATLAB/Simulink搭建仿真模型对所提出的方法进行了验证。仿真结果表明,与传统的UKF和扩展Kalman滤波(EKF)相比,DUKF能够在转变工况下进一步提升履带车辆滑动参数估计精度并减小轨迹预测误差。Accurate motion models for tracked vehicles are difficult to build due to the complex interactions between the tracks and the terrain.A dual-layer unscented Kalman filter(DUKF)is developed to estimate the slip parameters in real time for tracked vehicles.An upper-layer unscented Kalman filter(UKF)is used first to estimate the slip parameters based on the historical trajectory information,which are then imported into the vehicle model based on the instantaneous centers of rotation(ICRs)to predict the forward trajectory.A lower-layer UKF is then used to correct the preliminarily estimated slip parameters based on the residual position of the trajectory prediction.The effectiveness of the DUKF is verified by simulations on RecurDyn and MATLAB/Simulink.The simulations show that the DUKF improves the accuracy of the slip parameter estimation and reduces the trajectory prediction errors with curvatures compared with predictions using the UKF and the extended Kalman filter(EKF).
关 键 词:履带车辆 滑动参数 无迹Kalman滤波(UKF) 轨迹预测 瞬时转向中心(ICR)
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.82