基于智能优化箱粒子滤波的移动机器人FastSLAM  被引量:9

FastSLAM for mobile robot based on box particle filter with intelligence optimization

在线阅读下载全文

作  者:罗景文 秦世引[2] LUO Jingwen;QIN Shiyin(School of Information Science and Technology,Yunnan Normal University,Kunming 650500,China;School of Automation Science and Electrical Engineering,Beihang University,Beijing 100083,China)

机构地区:[1]云南师范大学信息学院,昆明650500 [2]北京航空航天大学自动化科学与电气工程学院,北京100083

出  处:《北京航空航天大学学报》2022年第1期53-66,共14页Journal of Beijing University of Aeronautics and Astronautics

基  金:国家自然科学基金(62063036);云南师范大学博士科研启动项目(01000205020503115)。

摘  要:针对传统FastSLAM算法需要大量粒子构建地图导致计算复杂度高、难以提高估计精度等问题,研究构建了一种基于智能优化箱粒子滤波(IOBPF)的移动机器人FastSLAM算法。首先,将萤火虫算法(FA)的动态寻优机制引入箱粒子滤波(BPF),建立了箱粒子的荧光亮度更新公式、吸引度计算公式和位置更新公式,使箱粒子集智能化地向高似然区域移动,避免了箱粒子的退化现象。然后,以改进的智能优化箱粒子滤波进行机器人位姿估计,并采用扩展区间卡尔曼滤波(EIKF)完成地图的构建和更新。移动机器人的模型仿真和实体实验结果表明:所提智能化FastSLAM算法可有效提升箱粒子的性能,并降低地图构建所需粒子数,从而显著提高FastSLAM的定位精度和地图构建的鲁棒性。The traditional FastSLAM algorithm requires a large number of particles to build the map, thus resulting in high computational complexity and difficulty in improving the estimation accuracy. In view of these problems, an algorithm of FastSLAM for mobile robot is presented based on box particle filter with intelligence optimization(IOBPF). First, the dynamic optimization mechanism of firefly algorithm(FA) is applied to the box particle filter(BPF), and the formulas of fluorescence brightness updating, attraction calculation and position updating of box particle are constructed, which makes the box particles move toward the high-likelihood region intelligently and avoid the phenomenon of box particle degeneracy. Then, the improved BPF with intelligence optimization is utilized to estimate the pose of robot, and the extended interval Kalman filter(EIKF) is employed to complete the map building and updating. The results of model simulation and entity experiment of mobile robot show that the intelligent FastSLAM algorithm in this paper can effectively improve the performance of box particles and reduce the number of particles required for map construction, thus significantly improving the positioning accuracy and robustness of map construction.

关 键 词:同步定位与地图构建 移动机器人 箱粒子滤波(BPF) 萤火虫算法(FA) 扩展区间卡尔曼滤波(EIKF) 

分 类 号:TP242.6[自动化与计算机技术—检测技术与自动化装置] TB553[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象