检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:熊连桥 李建平 谢晓军 岳翔 呼和 方培岳 白海强 张东 XIONG Lian-qiao;LI Jian-ping;XIE Xiao-jun;YUE Xiang;HU He;FANG Pei-yue;BAI Hai-qiang;ZHANG Dong(CNOOC Research Institute Co.Ltd.,Beijing 100028,China;School of Earth Sciences,East China University of Technology,Nanchang 330013,China;State Key Laboratory of Palaeobiology and Stratigraphy,Nanjing Institute of Geology and Palaeontology and Center for Excel lence in Life and Paleoenvironment,Chinese Academy of Sciences,Nanjing 210008,China;Victorysoft Co.Ltd.,Dongying,Shandong 257000,China)
机构地区:[1]中海油研究总院有限责任公司,北京100028 [2]东华理工大学地球科学学院,南昌330013 [3]现代古生物学和地层学国家重点实验室,中国科学院南京地质古生物研究所和生物演化与环境卓越创新中心,南京210009 [4]山东胜软科技股份有限公司,山东东营257000
出 处:《古生物学报》2021年第4期616-623,共8页Acta Palaeontologica Sinica
基 金:“十三五”国家科技重大专项“中国近海富烃凹陷优选与有利勘探方向预测(2016ZX05024002)”支持。
摘 要:有孔虫个体微小、数量众多、地理分布广、演化迅速,是记录海洋沉积环境的重要载体,在海相生物地层划分和对比中具有十分重要的作用。因有孔虫属种众多,传统的属种鉴定需要经验丰富的专业人员进行人工鉴定且耗时较长,此外人工鉴定古生物面临人才匮乏和工作量大等问题。卷积神经网络在计算机视觉领域的应用可较好的解决上述问题。利用古生物专家对中新世浮游有孔虫化石标注为指导,根据有孔虫化石不同方向的视角分类,结合卷积神经网络算法,开发了有孔虫化石图像识别系统。研究发现,通过有孔虫化石腹视、缘视和背视角度分类,采取两级分段式鉴定算法对中新世浮游有孔虫属一级进行识别,属一级鉴定准确率达到82%左右。Foraminifera are characterized by their small size,abundance,wide distribution,and quick evolution.They provide important information about the sedimentary environment in the ocean and are significant for biostratigraphic division and correlation in marine facies.Traditional identification of foraminifera requires experts with rich experiences and is very time consuming.Fossil identification by human faces lots of problems such as the lack of talents,the amount of work,and communication difficulties.Convolution neural network algorithm,having been widely applied in computer visual identification field,can solve these problems effectively.Guided by labeled Miocene planktonic foraminifera,we develop an image recognition system by integrating different visual angles of the fossils and convolution neural network algorithm.The results indicate that,by applying the algorithm of two stage-segmentation,the fossils can be identified at generic level using the images of the umbilical,spiral,and edge views of the specimens.The identification accuracy of the computer model at generic level for the Miocene planktonic foraminifera can reach about 82%.
关 键 词:自动鉴定 卷积神经网络 浮游有孔虫 古环境 中新世
分 类 号:Q915[天文地球—古生物学与地层学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222