检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:梁正友[1,2] 王璐 李轩昂[1] 杨锋 LIANG Zheng-you;WANG Lu;LI Xuan-ang;YANG Feng(School of Computer and Electronic Information, Guangxi University, Nanning 530004, China;Guangxi Key Laboratory of Multimedia Communications and Network Technology, Nanning 530004, China)
机构地区:[1]广西大学计算机与电子信息学院,广西南宁530004 [2]广西多媒体通信与网络技术重点实验室,广西南宁530004
出 处:《计算机与现代化》2022年第2期97-101,共5页Computer and Modernization
基 金:国家自然科学基金资助项目(61861004)。
摘 要:针对大规模点集可能存在噪声、离群点及遮挡等情况,提出一种基于K-means++的多视图点云配准方法。首先,利用K-means++算法的随机播种技术对下采样后的多视图点集选取初始化的质心,并根据算法的基本原理完成聚类;其次,将点云数据存入K-D树结构,并利用最近邻搜索算法建立点集间的对应关系,从而提升对应点集的搜索效率;最后,通过迭代最近点算法依照扫描顺序计算各视图聚类得到的点云数据与所有视图间的刚性变换参数,将成对配准造成的误差均匀扩散到每个视图中,直至获得最终配准结果。在Stanford三维点云数据集上进行实验的结果表明,本文提出的方法比近年的部分多视图配准算法具有更高的配准精度及鲁棒性。A multi-view point cloud registration method based on K-means++is proposed for the possibility of noise,outliers and occlusion in large scale point sets.Firstly,the random seeding technique of K-means++algorithm is used to select the initialized center of mass from the subsampled multi-view point sets,and the clustering is completed according to the basic principle of the algorithm.Secondly,the point cloud data are stored in the K-D tree structure,and the nearest neighbor search algorithm is used to establish the corresponding relationship between the point sets,so as to improve the search efficiency of the corresponding point sets.Finally,the rigid transformation parameters between the point cloud data obtained by the clustering of each view and all views are calculated according to the scanning sequence by the iterative closest point algorithm,and the errors caused by pairwise registration are evenly spread to each view until the final registration result is obtained.Experiments on Stanford 3D point cloud datasets show that the proposed method has higher registration accuracy and robustness than partial multi-view registration algorithms in recent years.
关 键 词:点云配准 多视图配准 K-means++算法 迭代最近点算法 刚性配准
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.118.32.150