光流与纹理特征融合的人脸活体检测算法  被引量:6

Face Liveness Detection Based on Fusional Optical Flow and Texture Features

在线阅读下载全文

作  者:王宏飞 程鑫[1] 赵祥模[1] 周经美 WANG Hongfei;CHENG Xin;ZHAO Xiangmo;ZHOU Jingmei(School of Information Engineering,Chang’an University,Xi’an 710064,China;School of Electronic and Control Engineering,Chang’an University,Xi’an 710064,China)

机构地区:[1]长安大学信息工程学院,西安710064 [2]长安大学电子与控制工程学院,西安710064

出  处:《计算机工程与应用》2022年第6期170-176,共7页Computer Engineering and Applications

基  金:陕西省重点研发计划项目(2020GY-018);长安大学研究生科研创新实践项目(300103714044)。

摘  要:针对照片与视频重放这一常见人脸识别欺诈手段,利用人脸攻击图像的语义信息提出一种基于光流与纹理特征融合的人脸活体检测算法:采集连续两帧待检测人脸图像,通过光流法及人脸检测方法生成人脸区域光流场变化图,将其与原始RGB图像输入至2通道卷积神经网络提取并融合得到人脸动-静态特征,基于融合特征实现真实人脸与欺诈人脸分类。此外,为了更好地捕捉人脸区域的光流场变化,应用影像动作放大技术将待检测视频帧中0.04~0.4 Hz信号放大20倍。使用IDIAP的Replay Attack人脸活体检测数据集中1 300段视频数据进行模型训练、验证和测试。实验表明,提出的人脸活体检测算法在Replay Attack数据集测试表现良好并取得了1.04%半错误率,能够有效识别照片、视频攻击。Aiming at video replaying, the common face recognition system fraud method, this paper utilizes the semantic information of face attack images to propose a face spoofing detection algorithm based on optical flow and texture features. The optical flow field map of the face area is generated by the optical flow method and face detection method from two consecutive frames of the captured face video. Then, the original RGB face area image and optical flow field map are input to a 2-channels convolutional neural network to extract and fuse the features of the face. Finally, based on the optical flow and texture features, it realizes classification of real and fake faces. In addition, in order to better generate the optical flow field map containing liveness information, a motion amplification algorithm is applied to enhance the 0.04-0.4 Hz signal in the video frame by 20 times. This paper uses the Replay Attack spoofing dataset from IDIAP consisting of 1,300 videos for model training, verification and testing. Experiments show that the proposed algorithm performs well on the Replay Attack data set and achieves half total error rate of 1.04%.

关 键 词:计算机视觉 神经网络 活体检测 光流法 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象