一类具有迁移和Allee效应的食饵-捕食者系统稳定性  被引量:2

Stability of a Prey-predator Model with Migration and Allee Effects

在线阅读下载全文

作  者:徐王军 曹进德 伍代勇 申传胜 XU Wangjun;CAO Jinde;WU Daiyong;SHEN Chuansheng(School of Mathematics and Physics,Anqing Normal University,Anqing Anhui 246133,China;School of Mathematics,Southeast University,Nanjing Jiangsu 211189,China)

机构地区:[1]安庆师范大学数理学院,安徽安庆246133 [2]东南大学数学学院,江苏南京211189

出  处:《广西师范大学学报(自然科学版)》2022年第2期103-115,共13页Journal of Guangxi Normal University:Natural Science Edition

基  金:国家自然科学基金(11975025);国家自然科学基金委员会与英国皇家学会合作交流项目(12011530158)。

摘  要:研究一类食饵具有Allee效应且捕食者具有人工控制迁移的食饵-捕食者系统,该系统具有平方根项的功能性反应函数。首先通过定性分析,证明解的有界性,分析平衡点的存在性,得到系统平衡点的局部稳定性的充分条件。接着讨论平衡点的Hopf分岔存在性,并通过计算第一李雅普诺夫系数,研究平衡点Hopf分岔的稳定性和方向。最后通过数值模拟验证所得结论的正确性,结果表明Allee效应和人工控制迁移率对食饵种群和捕食者种群的生存与灭绝具有重要意义。A kind of prey-predator system with Allee effect and artificially controlled migration of predators is studied.The system has a square root functional response function.Firstly,by qualitative analysis of the model,the boundedness of the solution is proved,and the existence of the equilibrium point is analyzed.Sufficient conditions for the local stability of the equilibrium point of the system are obtained.Then,the existence of the Hopf-bifurcation of the equilibrium point is discussed,and the stability and direction of the equilibrium Hopf-bifurcation are studied by calculating the first Lyapunov coefficient.Finally,the correctness of the conclusion is verified by numerical simulation.The results indicate that the Allee effect and artificially controlled migration rate are important for the survival and extinction of prey and predator populations.

关 键 词:食饵-捕食者模型 ALLEE效应 迁移率 HOPF分岔 稳定性 

分 类 号:Q141[生物学—生态学] O175[生物学—普通生物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象