动力系统的Poisson结构和可积变形  

Poisson structures and integrable deformations of dynamical systems

在线阅读下载全文

作  者:张亚欣 黄晴 Zhang Yaxin;Huang Qing(School of Mathematics,Northwest University,Xi′an 710127,China)

机构地区:[1]西北大学数学学院,陕西西安710127

出  处:《纯粹数学与应用数学》2022年第1期91-97,共7页Pure and Applied Mathematics

基  金:国家自然科学基金(11871396).

摘  要:利用动力系统的守恒积分构造Poisson结构,将动力系统表示为广义Hamilton系统的形式,并以一个三维动力系统为例,通过添加任意可微函数推广守恒积分,构造系统的可积变形,并给出变形后系统的Poisson结构,由此得到了新的刘维尔可积系统.Poisson structures and integrable deformations of a three-dimensional dynamical system are studied in this paper.The first integrals of the given dynamical system are used to construct Poisson structures,then the system can be recast into the generalized Hamiltonian system.In addition,the integrable deformations of the initial system are constructed by adding arbitrary differentiable functions to the first integrals and the Poisson structures of the deformation systems are given.Thus new Liouville integrable systems are obtained.

关 键 词:动力系统 POISSON结构 广义HAMILTON系统 守恒积分 可积变形 

分 类 号:O193[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象