基于视觉定位的水下机器人无通信高精度编队技术研究  被引量:4

Research on High-precision Unmanned Underwater Vehicles Team Formation without Communication Based on Visual Positioning Technology

在线阅读下载全文

作  者:杨翊[1,2] 周星群 胡志强 范传智[1,2] 王志超 傅殿友 郑权[1,2] YANG Yi;ZHOU Xingqun;HU Zhiqiang;FAN Chuanzhi;WANG Zhichao;FU Dianyou;ZHENG Quan(State Key Laboratory of Robotics,Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang 110016,China;Institutes for Robotics and Intelligent Manufacturing,Chinese Academy of Sciences,Shenyang 110169,China)

机构地区:[1]中国科学院沈阳自动化研究所机器人学国家重点实验室,辽宁沈阳110016 [2]中国科学院机器人与智能制造创新研究院,辽宁沈阳110169

出  处:《数字海洋与水下攻防》2022年第1期50-58,共9页Digital Ocean & Underwater Warfare

摘  要:水下机器人集群技术是目前水下机器人技术领域的发展热点之一。针对以往基于通信的水下机器人编队存在的编队精度低、队形保持困难等问题,提出了基于水下矢量光图案及视觉定位的水下集群编队方法,并通过水池试验分别验证了视觉定位以及水下密集编队的功能和相关指标。试验结果表明:水下视觉定位能够达到不大于3%的定位精度和不小于2Hz的定位频率,能够为水下机器人自主航行提供准确连续的控制输入。基于视觉定位的水下集群能够实现相互距离10 m以内的密集编队,编队精度不大于10%,较以往基于通信的编队方法有较大提升。Unmanned underwater vehicles swarm technology is one of the current development hotspots in the field of Unmanned Underwater Vehicles.Aiming at the low formation precision and difficult formation keeping existing in communication-based unmanned underwater vehicles team formation,a method of underwater swarm formation based on underwater vector light pattern and visual positioning is proposed.The functions and related indexes of visual positioning and underwater intensive formation are verified by pool test.The test results show that underwater visual positioning can achieve a positioning accuracy of no more than 3%and positioning frequency of no less than 2 Hz,which can provide accurate and continuous control input for autonomous navigation of UUVs.swarm based on visual positioning can achieve intensive formations within the distance of 10 meters between each vehicle while the formation accuracy is no more than 10%,which is greatly improved compared with the previous communication-based formation methods.

关 键 词:水下机器人 集群 编队 视觉 定位 

分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象