检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李振拯 丁恩杰[1,2] 王戈琛 LI Zhenzheng;DING Enjie;WANG Gechen(IOT Perception Mine Research Center,China University of Mining and Technology,Xuzhou 221008,China;School of Information and Control Engineering,China University of Mining and Technology,Xuzhou 221008,China)
机构地区:[1]中国矿业大学物联网(感知矿山)研究中心,江苏徐州221008 [2]中国矿业大学信息与控制工程学院,江苏徐州221008
出 处:《传感器与微系统》2022年第4期36-39,43,共5页Transducer and Microsystem Technologies
基 金:淄矿集团智慧矿山关键技术研发开放基金资助项目(2019LH08);国家重点研发计划基金资助项目(2017YFC0804400,2017YFC0804401)。
摘 要:同时定位与建图(SLAM)是无人车自主导航的基础,基于单一传感器的SLAM算法易受数据关联错误而导致算法跟踪失败。本文提出了一种激光雷达-惯性测量单元(LiDAR-IMU)传感器松耦合的同时定位与建图方法。提出了基于关键帧和基于普通帧的局部地图匹配方法,引入M估计修正代价函数的形状减少错误数据关联的影响,避免了信息损失维持了后端非线性优化的低计算资源需求,同时也能有效处理错误特征关联的问题。采用了基于Scan-Context的回环检测方法消除长期运行的定位漂移累积。实验结果表明本文方法的精度比单一传感器和其他松耦合方法更高。Simultaneous localization and mapping(SLAM)is the prerequisite for autonomous navigation,SLAM algorithm based on LiDAR is easy to lead to tracking failure due to erroneous data correlation.A simultaneous localization and mapping method based on loosely coupled LiDAR-inertial measurement unit(IMU)fusion is proposed.A local map matching method based on keyframe and ordinary frame is proposed.M-estimation is introduced to modify the shape of the cost function to reduce the impact of wrong data association,which avoids the loss of information,maintains the low computational resource demand of back-end nonlinear optimization,and can effectively deal with the problem of wrong feature association.The Scan-Context-based loop detection method is adopted to eliminate the error accumulation of long-term operation.Simulation results show the effectiveness of the proposed method.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38