检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:魏航信[1] 张青 Wei Hangxin;Zhang Qing(College of Mechanical Engineering,Xi′an Shiyou University,Xi′an 710065,China)
出 处:《机电工程技术》2022年第3期112-116,共5页Mechanical & Electrical Engineering Technology
摘 要:现有的油井地面示功图诊断方法只能诊断单一故障,为了提高抽油机的故障诊断性能,研究了一种改进型深度学习神经网络,可实现示功图可视化多混合故障诊断功能。改进型深度学习神经网络包括3层卷积神经网络和3层全连接神经网络。研究了改进型深度学习神经网络的前向学习算法和反向自适应权值修正算法,并提出了网络节点的PSO优化算法。对现场采集的地面示功图进行实验,优化后的卷积层节点数分别为64×64×20、28×28×16、10×10×16,池化层节点数分别为32×32×20、14×14×16、5×5×16。结果表明,示功图的平均识别时间为0.021 s,训练精度为99.4%,识别精度为94%,可以识别出两种混合故障,验证了该神经网络的可靠性和准确性,满足抽油机工况检测的诊断精度要求。该研究对于实现智慧采油具有重要的意义。The existing diagnosis method for surface dynamometer cards of oil well can only diagnose a single type of fault.Therefore,an improved deep learning neural network was studied to realize the visualized multi-hybrid fault diagnosis function of the dynamometer card.The neural network includes a 3-layer Convolutional Neural Network(CNN)and a 3-layer fully connected neural network.The forward learning algorithm and the backward adaptive weight correction algorithm of the improved deep learning neural network were studied.Particle Swarm Optimization(PSO)algorithm was used to optimize the number of neural network nodes.Diagnostic experients were performed for the ground dynamometer cards collected on site.The number of nodes in the optimized convolution layer was 64×64×20、28×28×16、10×10×16 respectively.The number of nodes in the pool layer was 32×32×20、14×14×16、5×5×16 respectively.The results show that the average recognition time of indicator diagram is 0.021s,the training accuracy is 99.4%,and the recognition accuracy is 94%.Two kinds of mixed faults can be identified,which verifies the reliability and accuracy of the neural network and meets the diagnostic accuracy requirements of pumping unit condition detection.The research is of great significance for realizing intelligent oil recovery.
分 类 号:TE319[石油与天然气工程—油气田开发工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30