基于数据驱动的气动柔性关节Takagi–Sugeno模糊系统建模与预测控制  被引量:6

Data-driven Takagi–Sugeno fuzzy system modeling and predictive control of a pneumatic flexible joint

在线阅读下载全文

作  者:陈诚[1] 黄剑[1] 刘磊[1] 伍冬睿 CHEN Cheng;HUANG Jian;LIU Lei;WU Dong-rui(School of Artificial Intelligence and Automation,Huazhong University of Science and Technology,Wuhan Hubei 430074,China)

机构地区:[1]华中科技大学人工智能与自动化学院,湖北武汉430074

出  处:《控制理论与应用》2022年第4期633-642,共10页Control Theory & Applications

基  金:国家自然科学基金项目(61873321,U1913207);辽宁省自然基金资助计划项目(2020–KF–22–01)资助;国家重点研发计划政府间/港澳台重点专项项目(2017YFE0128300)资助。

摘  要:针对气动柔性关节动态特性复杂、难以实现高精度控制的问题,提出一种基于Takagi–Sugeno(T–S)模糊系统的预测控制方法.首先,应用MBGD–RDA算法对T–S模糊系统进行离线训练,该算法结合了机器学习中的小批量梯度下降算法、正则化、Droprule和AdaBound算法.其次,基于模糊集相似性度量方法,对训练得到的T–S模糊系统的模糊集进行剪枝,对模糊规则进行合并,简化T–S模糊系统结构.最后,设计了基于T–S模糊系统的单层神经网络预测控制器.T–S模糊系统参数和预测控制器参数均能实现在线更新,且基于李雅普诺夫理论的稳定性分析保证了系统的稳定性.仿真结果验证了基于数据驱动的T–S模糊系统的高精度预测性能,且结构简化后的T–S模糊系统在规则数减少的情况下仍能维持较高的预测精度.实际实验中,所提控制方法最大跟踪误差小于3°,而传统的模糊逻辑控制器最大跟踪误差大于5°,这表明所提控制算法显著提升了对柔性关节的跟踪控制精度.A predictive control approach based on Takagi–Sugeno(T–S)fuzzy system is proposed to address complex dynamics of the pneumatic flexible joint and achieve high-precision control.Firstly,a data-driven training algorithm,MBGD–RDA which combines mini-batch gradient descent,regularization,DropRule,and AdaBound of machine learning,trains T–S fuzzy systems offline.Secondly,based on the similarity measure of fuzzy sets,T–S fuzzy systems’fuzzy sets and rules are pruned and merged to simplify the structure.Finally,based on the T–S fuzzy system,a single layer neural network(SNN)predictive controller is proposed.Parameters of the T–S fuzzy system and parameters of the SNN controller can be updated online,and the stability of the system is guaranteed based on the Lyapunov theory.Simulation results validate the high-precision prediction capability of the T–S fuzzy system based on data-driven.The T–S fuzzy system with a simplified structure can maintain high prediction accuracy with fewer rules.In real-world experiments,the maximum tracking error of the proposed method is less than 3°,while the maximum tracking error of the traditional fuzzy logic controller is more than 5°,which indicates that the proposed method significantly improves the tracking control accuracy of the flexible joint.

关 键 词:柔性关节 预测控制 数据驱动 模糊系统 

分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象