检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王芳 冯秀芳 WANG Fang;FENG Xiufang(School of Mathematical Statistics,Ningxia University,Yinchuan 750021)
出 处:《工程数学学报》2022年第1期120-134,共15页Chinese Journal of Engineering Mathematics
基 金:国家自然科学基金(11961054);宁夏自然科学基金(2020AAC03069)。
摘 要:很多实际物理问题都可以由带有不连续波数的变系数Helmholtz方程进行数值模拟。Helmholtz方程的数值方法研究是热点问题之一,具有重要的理论和实际意义。由于波数的不连续性,使用传统的有限差分方法求解带有不连续波数的Helmholtz方程时通常无法达到原有差分格式的精度。结合浸入界面方法的思想,对带有不连续波数的二维变系数Helmholtz方程构造了一类新的四阶紧致有限差分格式,数值实验验证了新方法的可靠性和有效性。Many practical physical problems can be numerically simulated by the variable coefficients Helmholtz equation with discontinuous wave number. The numerical method of the Helmholtz equation, with important theoretical and practical significance, is one of the hot research topics. Due to the discontinuity of wave number, the traditional finite difference method is usually unable to achieve the accuracy of the original difference scheme when solving Helmholtz equation with discontinuous wave number. Based on the idea of immersed interface method, a new fourth-order compact finite difference scheme is constructed for two-dimensional coefficient Helmholtz equation with discontinuous wave number. The reliability and effectiveness of the new method are verified by numerical experiments.
关 键 词:变系数Helmhlotz方程 浸入界面方法 紧致格式 有限差分方法
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.178.82