检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴振慧[1] 王彩余 WU Zhen-hui;WANG Cai-yu(School of Electronic Engineering,Yangzhou Vocational University,Yangzhou 225009,China;Department of Technology,Yangzhou Guangrun Machinery Co.,Ltd.,Yangzhou 225000,China)
机构地区:[1]扬州市职业大学电子工程学院,江苏扬州225009 [2]扬州广润机械有限公司技术部,江苏扬州225000
出 处:《南通职业大学学报》2022年第1期70-75,共6页Journal of Nantong Vocational University
摘 要:为了实现大型点云的精确配准,首先对大型点云数据进行降采样及去质心预处理,并采用迭代最近点(Iterative Closest Point,ICP)算法计算点云间的旋转矩阵R与平移矩阵T,最终在Visual Studio中基于OpenGL库实现界面交互和结果显示。结果表明,该配准算法既支持人为选择关键点进行配准,也支持随机生成关键点进行配准,且准确率高。大型点云数据实验表明,针对大型点云点数目多,普通配准算法计算时间长的问题,采用K-D树进行配准算法加速,可保证精度,同时大大缩短了大型点云配准计算时间。To achieve the precise registration of large point cloud,down-sampling and de-centroid preprocessing of large point cloud data are conducted first,and then the iterative closest point(ICP) algorithm is used to calculate the rotation matrix R and translation matrix T between the point clouds. The interface interaction and result display are finally achieved based on OpenGL library in Visual Studio. The results show that the registration algorithm not only supports manual selection of key points for registration,but also supports random generation of key points, and the registration accuracy is high. It is shown in the experiments that compared with the traditional registration algorithm, K-D tree accelerated registration algorithm not only guarantees the accuracy but also greatly reduces the computational time of registration for large-scale point cloud with many points.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222