基于K-D树加速的大型点云配准算法  被引量:2

Large-scale Point Cloud Registration Algorithm Based on K-D Tree Acceleration

在线阅读下载全文

作  者:吴振慧[1] 王彩余 WU Zhen-hui;WANG Cai-yu(School of Electronic Engineering,Yangzhou Vocational University,Yangzhou 225009,China;Department of Technology,Yangzhou Guangrun Machinery Co.,Ltd.,Yangzhou 225000,China)

机构地区:[1]扬州市职业大学电子工程学院,江苏扬州225009 [2]扬州广润机械有限公司技术部,江苏扬州225000

出  处:《南通职业大学学报》2022年第1期70-75,共6页Journal of Nantong Vocational University

摘  要:为了实现大型点云的精确配准,首先对大型点云数据进行降采样及去质心预处理,并采用迭代最近点(Iterative Closest Point,ICP)算法计算点云间的旋转矩阵R与平移矩阵T,最终在Visual Studio中基于OpenGL库实现界面交互和结果显示。结果表明,该配准算法既支持人为选择关键点进行配准,也支持随机生成关键点进行配准,且准确率高。大型点云数据实验表明,针对大型点云点数目多,普通配准算法计算时间长的问题,采用K-D树进行配准算法加速,可保证精度,同时大大缩短了大型点云配准计算时间。To achieve the precise registration of large point cloud,down-sampling and de-centroid preprocessing of large point cloud data are conducted first,and then the iterative closest point(ICP) algorithm is used to calculate the rotation matrix R and translation matrix T between the point clouds. The interface interaction and result display are finally achieved based on OpenGL library in Visual Studio. The results show that the registration algorithm not only supports manual selection of key points for registration,but also supports random generation of key points, and the registration accuracy is high. It is shown in the experiments that compared with the traditional registration algorithm, K-D tree accelerated registration algorithm not only guarantees the accuracy but also greatly reduces the computational time of registration for large-scale point cloud with many points.

关 键 词:点云配准 大型点云 迭代最近点 K-D树 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象