检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:冯小鹏 李勇 袁于思 黄定于 张磊[2] FENG Xiaopeng;LI Yong;YUAN Yusi;HUANG Dingyu;ZHANG Lei(China Railway Wuhan Electrification Bureau Group Co.,Ltd.,Wuhan 430074,China;Wuhan University of Science and Technology,Wuhan 430081,China)
机构地区:[1]中铁武汉电气化局集团第一工程有限公司,武汉430074 [2]武汉科技大学,武汉430081
出 处:《有色金属(矿山部分)》2022年第3期65-70,77,共7页NONFERROUS METALS(Mining Section)
基 金:国家自然科学基金资助项目(51805382);湖北省安全生产专项资金科技项目(KJZX202007003)。
摘 要:为了准确快速地分析露天矿边坡的稳定性,提出利用AdaBoost卷积神经网络(AdaBoost-CNN)分析露天矿边坡稳定性和影响因素之间的非线性关系。AdaBoost-CNN是结合自适应Boosting算法(AdaBoost)和卷积神经网络(CNN)的一种新的机器学习方法。其核心思想是将CNN的特征提取能力和AdaBoost处理非平衡数据的能力结合起来,具有高可靠性、高精度性、训练时间少等优点。AdaBoost-CNN利用迁移学习,不仅消除了传统CNN需要大量训练样本的限制,而且解决了AdaBoost算法序列化过程中存在着的降低实际性能的问题。分别采用BP神经网络、支持向量机(SVM)、卷积神经网络以及AdaBoost-CNN对工程实测数据进行建模与分析,通过对比均方根误差(RMSE)和相对预测误差(RPE),发现AdaBoost-CNN的预测精度最高、模型泛化能力最强。结果表明,AdaBoost-CNN能够较精确地对边坡的稳定性进行预测,是边坡稳定性预测的可靠性工具。To accurately and quickly analyze the stability of open-pit mine slopes,this paper proposes AdaBoost-Convolutional Neural Network(AdaBoost-CNN)to establish the nonlinear relationship between open-pit mine slope stability and influencing factors.AdaBoost-CNN is a new machine learning method that combines AdaBoost and CNN.The core idea is to combine the feature extraction capabilities of CNN with the ability of AdaBoost to process unbalanced data,which has the advantages of high reliability,high accuracy,and less training time.AdaBoost-CNN uses migration learning,which not only eliminates the limitation of CNN that require a large number of training samples but also solves the problem of reducing actual performance in the serialization process of AdaBoost.This paper uses BP neural network,Support Vctor Mchine,CNN,and AdaBoost-CNN to model and analyze the measured engineering data.By comparing RMSE and RPE,it is found that AdaBoost-CNN has the highest prediction accuracy and the strongest model generalization ability.The results show that AdaBoost-CNN can predict slope stability more accurately,and is a reliable tool for slope stability prediction.
关 键 词:矿山边坡 边坡稳定 自适应增强算法 卷积神经网络 稳定性预测
分 类 号:P258[天文地球—测绘科学与技术] X43[环境科学与工程—灾害防治]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30