检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵文均 何先波[1] ZHAO Wen-jun;HE Xian-bo(School of Computer,China West Normal University,Nanchong 637002,China)
机构地区:[1]西华师范大学计算机学院,四川南充637002
出 处:《西安文理学院学报(自然科学版)》2022年第2期53-57,共5页Journal of Xi’an University(Natural Science Edition)
摘 要:自组织映射网络(SOM)具有良好的自组织性和可视化等特征,因此常被用于无监督聚类中.传统的SOM网络在聚类时容易受控制参数和数据集输入顺序的影响,导致聚类的过度拟合和死节点的出现.自组织特征映射网络邻域调整过程中引入模拟退火算法,以一定的概率激活邻域外节点,有效避免网络的过度拟合和死节点的出现.在数据集上的实验证明,引入模拟退火算法SOM网络在一定程度上要优于原始算法.Self Organizing Mapping network(SOM)has the characteristics of good self-organization and visualization,so it is often used in unsupervised clustering.Traditional SOM networks are easily affected by control parameters and data set input order,resulting in over fitting of clustering and the emergence of dead nodes.Therefore,the simulated annealing algorithm is introduced into the neighborhood adjustment process of the traditional self-organizing feature mapping network to activate the nodes outside the neighborhood with a certain probability,so as to effectively avoid the over fitting of the network and the emergence of dead nodes.Experiments on data sets show that the SOM network with simulated annealing algorithm is better than that of the original algorithm to a certain extent.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.137.217