基于模拟退火改进的自组织映射网络聚类  被引量:1

Improved Self-organizing Mapping Network Clustering Based on Simulated Annealing

在线阅读下载全文

作  者:赵文均 何先波[1] ZHAO Wen-jun;HE Xian-bo(School of Computer,China West Normal University,Nanchong 637002,China)

机构地区:[1]西华师范大学计算机学院,四川南充637002

出  处:《西安文理学院学报(自然科学版)》2022年第2期53-57,共5页Journal of Xi’an University(Natural Science Edition)

摘  要:自组织映射网络(SOM)具有良好的自组织性和可视化等特征,因此常被用于无监督聚类中.传统的SOM网络在聚类时容易受控制参数和数据集输入顺序的影响,导致聚类的过度拟合和死节点的出现.自组织特征映射网络邻域调整过程中引入模拟退火算法,以一定的概率激活邻域外节点,有效避免网络的过度拟合和死节点的出现.在数据集上的实验证明,引入模拟退火算法SOM网络在一定程度上要优于原始算法.Self Organizing Mapping network(SOM)has the characteristics of good self-organization and visualization,so it is often used in unsupervised clustering.Traditional SOM networks are easily affected by control parameters and data set input order,resulting in over fitting of clustering and the emergence of dead nodes.Therefore,the simulated annealing algorithm is introduced into the neighborhood adjustment process of the traditional self-organizing feature mapping network to activate the nodes outside the neighborhood with a certain probability,so as to effectively avoid the over fitting of the network and the emergence of dead nodes.Experiments on data sets show that the SOM network with simulated annealing algorithm is better than that of the original algorithm to a certain extent.

关 键 词:SOM SA 模拟退火 邻域 聚类算法 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象