园艺电动拖拉机作业全覆盖路径规划算法研究  被引量:12

Research on Complete Coverage Path Planning of Gardening Electric Tractor Operation

在线阅读下载全文

作  者:商高高[1] 刘刚[1] 韩江义[1] 朱鹏 陈鹏 Shang Gaogao;Liu Gang;Han Jiangyi;Zhu Peng;Chen Peng(School of Automobile and Traffic Engineering,Jiangsu University,Zhenjiang 212013,China)

机构地区:[1]江苏大学汽车与交通工程学院,江苏镇江212013

出  处:《农机化研究》2022年第9期35-40,共6页Journal of Agricultural Mechanization Research

基  金:江苏省重点研发计划(现代农业)—园艺电动拖拉机研发项目(BE2017333,BE2018343)。

摘  要:提出了一种园艺电动拖拉机作业全覆盖路径规划算法,通过栅格法建立2.5D作业环境空间模型,结合改进遗传算法研究了电动拖拉机全覆盖路径规划算法,建立了基于遗传算法平面行驶路径长度、转向次数和行驶总高程差的多目标适应度函数;改进交叉、变异算子,以提高算法执行效率与降低行驶重复率。仿真实验表明:对比传统全覆盖路径规划算法,基于改进遗传算法的全覆盖路径规划算法平均转向次数减少9.3个,平均行驶栅格总数减少13.2个,重复栅格减少11.7个,行驶总高程差的均值小14.01m,重复率降低3.72%。因此,文中的全覆盖路径规划算法效率更优。In this paper,a complete coverage path planning algorithm for gardening electric tractors is proposed.A 2.5 D working environment spatial model was established by grid method,combining with improved genetic algorithm to study the electric tractor full coverage path planning algorithm,and a multi-objective fitness function of genetic algorithm for planar driving path length,number of turns and total height difference was established.Improved crossover operator and mutation operator to improve algorithm execution efficiency and reduce the repetition rate of full coverage path planning,and simulation comparison experiments were conducted.The results show that:compared with the traditional full-coverage path planning algorithm,full coverage path planning algorithm based on the improved genetic algorithm reduces the average number of turns by 9.3,the total number of average driving grids decreased by 13.2,and the number of repeated gridsdecreased by 11.7,the average value of the total elevation difference is reduced by 14.01 m and the repetition rate decreased by 3.72%.Therefore,the full coverage path planing algorithm in this paper is more efficient.

关 键 词:栅格法 全覆盖路径规划 多目标 改进遗传算法 园艺电动拖拉机 

分 类 号:S219.86[农业科学—农业机械化工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象