检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]四川省成都信息工程学院数学学院,610225 [2]四川省绵阳师范学院数理学院,621000
出 处:《数理化解题研究》2022年第18期29-31,共3页
基 金:四川省教育厅“高等数学的教学课程改革”研究成果,项目编号:16ZB0314;四川省教育厅基金资助(16ZB0314)。
摘 要:本文给出一般级数收敛的判定方法:若级数∑^(∞)_(n=1)b_(n)的部分和有界,且{lim}n→∞b_(n)=0,则级数∑^(∞)_(n=1)b_(n)收敛.如果级数∑^(∞)_(n=1)b_(n)的项添加括号后所成的级数收敛,且{lim}n→∞b_(n)=0,则该级数收敛.同时推广了级数收敛的阿贝尔判别法:当a_(n)为一个有界数列时,如果正项(或负项)级数∑^(∞)_(n=1)b_(n)收敛,那么级数∑∞n=1 a nb_(n)也收敛.当a n为一个收敛数列时,如果级数∑^(∞)_(n=1)b_(n)收敛,那么级数∑∞n=1 a nb_(n)也收敛.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15