从噪声数据学习偏微分方程的复合神经网络  被引量:4

A Compound Neural Network for Learning Partial Differential Equations from Noisy Data

在线阅读下载全文

作  者:潘剑 郭照立[1] 陈松泽 PAN Jian;GUO Zhaoli;CHEN Songze(State Key Laboratory of Coal Combustion,Huazhong University of Science and Technology,Wuhan,Hubei 430074,China)

机构地区:[1]华中科技大学煤燃烧国家重点实验室,湖北武汉430074

出  处:《计算物理》2022年第2期223-232,共10页Chinese Journal of Computational Physics

摘  要:提出一种名为NN-PDE(neural network-partial differential equations)的复合神经网络方法,用于噪声数据预处理和学习偏微分方程。NN-PDE用一套神经网络负责数据预处理,另一套网络耦合备选的方程信息,进而学习潜在的控制方程。两套网络复合为一套网络,可更加高效地处理噪声数据,有效减小噪声的影响。使用NN-PDE学习多种物理方程(如Burgers方程、Korteweg-de Vries方程、Kuramoto-Sivashinsky方程和Navier-Stokes方程)的噪声数据,均可获得准确的控制方程。A compound neural network method,NN-PDE(neural network-partial differential equations),is proposed for data preprocessing and learning partial differential equation.NN-PDE uses one sub network to preprocess noisy data,and another one to couple information of the alternative equations to learn the underlying governing equation.These two sub networks are merged into one compound network so that it can process noisy data more efficiently and effectively to reduce the influence of noise.Noisy data generated from various physical equations(such as Burgers equation,Korteweg-de Vries(KdV)equation,Kuramoto-Sivashinsky(KS)equation and Navier-Stokes(NS)equation)are studied with NN-PDE,and accurate governing equations are obtained.

关 键 词:噪声数据 复合神经网络 偏微分方程 

分 类 号:O175.2[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象