检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:高春艳[1] 卢建 张明路[1] 孙凌宇[1] GAO Chun-yan;LU Jian;ZHANG Ming-lu;SUN Ling-yu
机构地区:[1]河北工业大学,天津300401
出 处:《制造业自动化》2022年第7期95-97,101,共4页Manufacturing Automation
基 金:国家重点研发计划(2018YFB1305301);河北省应用基础研究计划重点基础研究项目(17961820D)。
摘 要:针对复杂环境下多传感器多目标跟踪问题,提出一种基于改进动态加权数据融合的UKF滤波多目标跟踪算法。该算法基于分布式融合结构,对于每个传感器得到的多个目标的观测信息,首先通过最近邻(Nearest Neighbor,NN)数据关联算法进行航迹关联;然后用无迹卡尔曼滤波(Unscented Kalman Filter,UKF)完成对多目标状态的估计,得到目标最新的运动轨迹;与此同时,综合多个传感器估计的目标轨迹,应用改进的动态加权数据融合算法,得到最终的目标轨迹。仿真结果表明,该算法能有效地发挥多传感器数据融合优势,准确地跟踪多个运动目标。与单传感器目标跟踪相比,多传感器数据融合后的目标跟踪精度提高20%以上。
关 键 词:多传感器数据融合 多目标跟踪 无迹卡尔曼滤波 动态加权融合
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222