检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李慧星[1,2] 姚涵译 许彬[1] 罗建成[1,2] LI Huixing;YAO Hanyi;XU Bin;LUO Jiancheng(Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology,Nanyang Institute of Technology,Nanyang 473004,China;College of Biology and Chemistry Engineering,Nanyang Institute of Technology,Nanyang 473004,China;Zhong-jing School of Chinese Medicine,Nanyang Institute of Technology,Nanyang 473004,China)
机构地区:[1]南阳理工学院河南省工业微生物资源与发酵重点实验室,河南南阳473004 [2]南阳理工学院生物与化学工程学院,河南南阳473004 [3]南阳理工学院张仲景国医国药学院,河南南阳473004
出 处:《中国酿造》2022年第7期51-57,共7页China Brewing
基 金:河南省工业微生物资源与发酵技术重点实验室开放课题(HIMFT20200103)。
摘 要:为研究浓香型白酒出窖酒醅微生物与酯类成分的定量关系,该研究通过高通量测序分析浓香型白酒出窖酒醅优势微生物属的相对丰度,使用气相色谱-质谱联用法(GC-MS)测定酒醅中主要酯类成分的相对含量,并以优势微生物属为自变量,主要酯类物质为因变量,对建模变量进行两轮筛选,建立两者的偏最小二乘(PLS)数学模型。结果表明,经变量筛选后得到的模型包含11种酯类物质和16种优势微生物属;模型主成分个数为3时,所保留的变量均能够用选取的主成分进行解释;所得模型能够解释92.6%的自变量信息和89.4%的因变量信息,预测率为0.679,质量良好,该模型可以定量解释出窖酒醅微生物与酯类之间的关联性。In order to study the quantitative relationship between dominant microorganisms and ester components in the fermented grains of strong-flavor(Nongxiangxing)Baijiu,the relative abundance of dominant microorganisms in the fermented grains of strong-flavor Baijiu in genus level was analyzed by high-throughput sequencing technology,and the relative percentage of main ester components in the fermented grains was determined by GC-MS,while the partial least squares(PLS)mathematical model was established after two rounds of model variables screening with the dominant microorganisms as independent variable and main ester components as dependent variable.The results showed that after variable filtering,the PLS model contained 11 kinds of esters and 16 kinds of dominant microbial genera.When the number of main components of the model was 3,the remained variables could be explained by these selected main components.The PLS model could explain 92.6%information of independent variables and 89.4%information of dependent variables,the predicting rate of the model was 0.679,with good quality,and the model can quantitatively explain the correlation between the microorganisms in fermented grains of unloading pits and ester components.
分 类 号:TS261[轻工技术与工程—发酵工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7