检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:肖爱迪 骆力明[1] 刘杰[1] XIAO Ai-di;LUO Li-ming;LIU Jie(Information Engineering College,Capital Normal University,Beijing 100048,China)
出 处:《计算机工程与设计》2022年第8期2236-2243,共8页Computer Engineering and Design
基 金:国家新一代人工智能(2030)重大基金项目(2020AAA0109700);国家自然科学基金项目(62076167);北京市教委-市自然基金联合基金项目(KZ201910028039)。
摘 要:针对目前HOG提取汉字特征时存在维度过大、特征边缘化的问题,结合汉字网格技术提出一种基于网格的分层HOG特征提取算法。以特征块无重叠的方式提取一层HOG特征,提取底层均匀块的梯度特征,融合两层特征。该算法可有效提取汉字轮廓特征,降低特征维度。在此基础上,提出较为完善的中小学硬笔汉字分类评价框架流程,结合线性PCA降维,采用SVM分类器,实现硬笔汉字的三级分类。通过多个汉字结构的分类实验,验证了该算法的准确性和有效性。To solve the problem of large dimensions and marginal features in the current HOG extraction of Chinese character features,a grid-based hierarchical HOG feature was proposed in combination with the Chinese character grid technology.A layer of HOG feature was extracted in a non-overlapping way.The gradient features of the underlying homogeneous block were extracted.Two layers of features were fused.The algorithm was used to extract contour features of Chinese characters and reduce feature dimensions.On this basis,a relatively perfect evaluation framework of hard-pen Chinese character classification was put forward.Among them,linear PCA dimension reduction was combined,and SVM classifier was used,to achieve the three-level classification of hard-pen Chinese characters.The accuracy and effectiveness of the algorithm were verified by the classification experiments of several Chinese characters.
关 键 词:硬笔汉字 HOG特征 主成分分析 SVM分类器 汉字评价 评价框架
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229