改进的HOG和SVM的硬笔汉字分类算法  被引量:2

Improved HOG and SVM hard-pen Chinese character classification algorithm

在线阅读下载全文

作  者:肖爱迪 骆力明[1] 刘杰[1] XIAO Ai-di;LUO Li-ming;LIU Jie(Information Engineering College,Capital Normal University,Beijing 100048,China)

机构地区:[1]首都师范大学信息工程学院,北京100048

出  处:《计算机工程与设计》2022年第8期2236-2243,共8页Computer Engineering and Design

基  金:国家新一代人工智能(2030)重大基金项目(2020AAA0109700);国家自然科学基金项目(62076167);北京市教委-市自然基金联合基金项目(KZ201910028039)。

摘  要:针对目前HOG提取汉字特征时存在维度过大、特征边缘化的问题,结合汉字网格技术提出一种基于网格的分层HOG特征提取算法。以特征块无重叠的方式提取一层HOG特征,提取底层均匀块的梯度特征,融合两层特征。该算法可有效提取汉字轮廓特征,降低特征维度。在此基础上,提出较为完善的中小学硬笔汉字分类评价框架流程,结合线性PCA降维,采用SVM分类器,实现硬笔汉字的三级分类。通过多个汉字结构的分类实验,验证了该算法的准确性和有效性。To solve the problem of large dimensions and marginal features in the current HOG extraction of Chinese character features,a grid-based hierarchical HOG feature was proposed in combination with the Chinese character grid technology.A layer of HOG feature was extracted in a non-overlapping way.The gradient features of the underlying homogeneous block were extracted.Two layers of features were fused.The algorithm was used to extract contour features of Chinese characters and reduce feature dimensions.On this basis,a relatively perfect evaluation framework of hard-pen Chinese character classification was put forward.Among them,linear PCA dimension reduction was combined,and SVM classifier was used,to achieve the three-level classification of hard-pen Chinese characters.The accuracy and effectiveness of the algorithm were verified by the classification experiments of several Chinese characters.

关 键 词:硬笔汉字 HOG特征 主成分分析 SVM分类器 汉字评价 评价框架 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象