检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张玉娇 ZHANG Yujiao(School of Electronic Information Engineering,Hebi Vocational and Technical College,Henan 458030,China)
机构地区:[1]鹤壁职业技术学院电子信息工程学院,河南458030
出 处:《集成电路应用》2022年第6期63-65,共3页Application of IC
基 金:中国高校产学研创新基金-异构智能计算项目课题(2020HYA01001)。
摘 要:阐述卷积神经网络因其在图像识别领域的优良表现,它被广泛应用于车牌识别、自动银行支票处理等领域,但卷积神经网络的参数量大、运算量大,且随着网络层数的加深运算量成倍增加,使其运算速度较慢,影响了模型落地及应用部署。模型轻量化部署及加速研究显得尤为重要,模型压缩、算子优化、硬件加速成为发展方向。以手写体数字识别的卷积神经网络为例,探讨卷积神经的结构特点、实施加速的方向和基于FPGA的硬件加速应用。Because of its excellent performance in the field of image recognition, convolutional neural network is widely used in license plate recognition, automatic bank check processing and other fields. However, convolutional neural network has a large amount of parameters and computation, and with the deepening of the number of network layers, the computation increases exponentially, making its operation speed slow, affecting the model landing and application deployment. Model lightweight deployment and acceleration research is particularly important. Model compression, operator optimization and hardware acceleration have become the development direction. Taking convolutional neural network for handwritten digit recognition as an example, it discusses the structural characteristics of convolutional neural network, the direction of implementation acceleration and the hardware acceleration application based on FPGA.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3