基于卷积神经网络的手写体数字识别及其加速方法  被引量:2

Study on Handwritten Digit Recognition Based on Convolutional Neural Network and Acceleration Method

在线阅读下载全文

作  者:张玉娇 ZHANG Yujiao(School of Electronic Information Engineering,Hebi Vocational and Technical College,Henan 458030,China)

机构地区:[1]鹤壁职业技术学院电子信息工程学院,河南458030

出  处:《集成电路应用》2022年第6期63-65,共3页Application of IC

基  金:中国高校产学研创新基金-异构智能计算项目课题(2020HYA01001)。

摘  要:阐述卷积神经网络因其在图像识别领域的优良表现,它被广泛应用于车牌识别、自动银行支票处理等领域,但卷积神经网络的参数量大、运算量大,且随着网络层数的加深运算量成倍增加,使其运算速度较慢,影响了模型落地及应用部署。模型轻量化部署及加速研究显得尤为重要,模型压缩、算子优化、硬件加速成为发展方向。以手写体数字识别的卷积神经网络为例,探讨卷积神经的结构特点、实施加速的方向和基于FPGA的硬件加速应用。Because of its excellent performance in the field of image recognition, convolutional neural network is widely used in license plate recognition, automatic bank check processing and other fields. However, convolutional neural network has a large amount of parameters and computation, and with the deepening of the number of network layers, the computation increases exponentially, making its operation speed slow, affecting the model landing and application deployment. Model lightweight deployment and acceleration research is particularly important. Model compression, operator optimization and hardware acceleration have become the development direction. Taking convolutional neural network for handwritten digit recognition as an example, it discusses the structural characteristics of convolutional neural network, the direction of implementation acceleration and the hardware acceleration application based on FPGA.

关 键 词:卷积神经网络 手写体数字 FPGA 硬件加速 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] TP391.41[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象