基于XGBoost的多种生理信号评估心理压力等级方法  被引量:5

Psychological Stress Assessment Using Multiple Physiological Signals Based on XGBoost

在线阅读下载全文

作  者:林艳飞 龙媛 张航 刘志文[1] 张政波[2] LIN Yanfei;LONG Yuan;ZHANG Hang;LIU Zhiwen;ZHANG Zhengbo(School of Information and Electronics,Beijing Institute of Technology,Beijing 100081,China;General Hospital of People’s Liberation Army,Beijing 100036,China)

机构地区:[1]北京理工大学信息与电子学院,北京100081 [2]中国人民解放军总医院,北京100036

出  处:《北京理工大学学报》2022年第8期871-880,共10页Transactions of Beijing Institute of Technology

基  金:广东省重点研发项目(2018B030339001);北京科技计划项目(Z201100004420015);国家自然科学基金资助项目(61601028,61431007);国家重点研发计划项目(2017YFB1002505)。

摘  要:基于生理信号客观评估心理压力状态成为目前的研究热点,但最佳评估算法有待进一步探索.本文选择心算任务诱发受试者的心理压力,采集了21位在校大学生的脑电、心电、皮肤电导、脉搏波4种生理信号.提取各生理信号时域和频域的多种特征,使用方差分析(ANOVA)、最大相关最小冗余(mRMR)、单个特征支持向量机(SVM)分类准确率、随机森林(RF)特征重要性、梯度上升决策树(GBDT)特征重要性、极端梯度提升(XGBoost)特征重要性6种特征选择方法筛选出有效特征,利用SVM、K近邻(KNN)、高斯朴素贝叶斯(GNB)、自适应提升算法(Adaboost)、GBDT、XGBoost 6种分类器对提取的特征进行分类.结果得出,GBDT特征筛选与XGBoost分类器的组合模型对心理压力的等级评估效果最佳.Objective assessment of psychological stress using physiological signals has become a current research hotspot,but the best algorithm needs to be further explored.In this study,a mental arithmetic task was conducted to induce psychological stress in subjects.Four physiological signals including EEG,ECG,skin conductance,and pulse wave were collected from 21 university students.The features of the time and frequency domains for physiological signals were extracted.Six methods including ANOVA,mRMR,Support Vector Machine(SVM),Random Forest(RF),Gradient Boosting Decision Tree(GBDT),Extreme Gradient Boosting(XGBoost)were utilized to select effective features.SVM,K-Nearest Neighbor(KNN),Gaussian Naive Bayesian(GNB),Adaptive Boosting(Adaboost),GBDT,and XGBoost were conducted to classify the extracted features.The results show that the combined model of GBDT feature selection and XGBoost classifier is the most effective for the assessment of psychological stress on different levels.

关 键 词:心理压力 生理信号 方差分析 分类器 

分 类 号:R318.04[医药卫生—生物医学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象