检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:夏杰锋 唐武勤 杨强[1,2] XIA Jie-feng;TANG Wu-qin;YANG Qiang(College of Electrical Engineering,Zhejiang University,Hangzhou 310027,China;Zhejiang Lab,Hangzhou 310000,China)
机构地区:[1]浙江大学电气工程学院,浙江杭州310027 [2]之江实验室,浙江杭州310000
出 处:《浙江大学学报(工学版)》2022年第8期1640-1647,共8页Journal of Zhejiang University:Engineering Science
基 金:国家自然科学基金资助项目(51777183)。
摘 要:针对光伏电站传统巡检技术的高成本、低效率以及准确率不高等问题,提出二阶段式的航拍红外图像热斑检测方法,实现对红外图像中热斑缺陷的组件级定位及精细化分类诊断.该方法将传统图像处理技术与深度学习方法融合,进一步提升缺陷诊断的准确率与效率.基于航拍红外图像前、后景灰度值的差异,提出基于边缘检测的组件分割方法来提取光伏组件轮廓以实现组件级定位,该方法以相对较小的硬件需求实现光伏组件有效检出率可达99.3%.考虑到热斑成因、危害及对应处理方式的差异性,提出基于EfficientNet的红外缺陷分类模型对热斑进行精细的四分类,为电站运维人员提供更为精准的决策支撑,该模型在空间占用20.17 MB的情况下获得97.0%的热斑分类准确率.经过实验对比分析,论证了本研究所提出的方法在缺陷诊断的效率以及准确率上都较高.A two-stage hot spot detection method of aerial infrared image was proposed to realize component level positioning and fine classification diagnosis of hot spot defects in infrared image,aiming at the problems of high cost,low efficiency and low accuracy of traditional inspection technology of photovoltaic power station.This method combined the traditional image processing technology with the deep learning method to further improve the accuracy and efficiency of defect diagnosis.Specifically,firstly,based on the difference between the gray values of the front and back scenes of aerial infrared images,a component segmentation method based on edge detection was proposed to extract the contour of photovoltaic components to achieve component level positioning.This method achieved the effective detection rate of photovoltaic components up to 99.3%with relatively small hardware requirements.Secondly,considering the differences in the causes,hazards and corresponding treatment methods of hot spots,an infrared defect classification model based on EfficientNet was proposed to finely classify the hot spots,so as to provide more accurate decision support for the operation and maintenance personnel of the power station.The model obtained hot spot classification accuracy of 97.0%when it occupied 20.17 MB.Through experimental comparison and analysis,it is demonstrated that the proposed method has greatly improved the efficiency and accuracy of defect diagnosis.
关 键 词:航拍图像 EfficientNet 深度学习 热斑检测 光伏 边缘检测
分 类 号:TP29[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.110.162