基于拉曼高光谱成像技术检测面粉中的偶氮甲酰胺  被引量:1

Detection of azoformamide in flour based on Raman hyperspectral imaging

在线阅读下载全文

作  者:王加安 刘立人 李延 刘疏影 Wang Jia'an;Liu Liren;Li Yan;Liu Shuying(School of Photoeleetronie Engineering,Changzhou Instiute of Technology,Chagzhou 213032,China;Kunshan Ultrasonie Instruments Co.,Ltd.,Kunshan 215345,China)

机构地区:[1]常州工学院光电工程学院,常州213032 [2]昆山市超声仪器有限公司,昆山215345

出  处:《电子测量技术》2022年第14期97-102,共6页Electronic Measurement Technology

基  金:江苏省高等学校自然科学研究面上项目(20KJB510041)资助。

摘  要:粉末状食品添加剂超标的违法行为严重威胁人民群众的身体健康。本研究利用自行搭建的拉曼高光谱检测系统,开发了利用拉曼高光谱图像定性定量预测面粉中偶氮甲酰胺掺杂的方法。该方法利用激光线光源获得偶氮甲酰胺掺杂样品785 nm附近的拉曼高光谱图像,预处理后通过选取感兴趣区域、数据降维并设置合适的阈值实现对面粉与偶氮甲酰胺信号的有效区分。研究通过分析图像的方法检测梯度浓度的偶氮甲酰胺掺杂样品并建立了相关的定量分析模型。最后通过一定数量的预测集验证了定量分析模型的可靠性,相关系数大于0.988。本研究为利用拉曼高光谱技术检测粉末状食品提供了一种新方法。The illegal action of exceeding the powdered food additives standard seriously threatens the health of people. In the study, a method for qualitative and quantitative prediction of azoformamide doping in flour through Raman hyperspectral images was developed by using a self-built Raman hyperspectral detection system. In this method, Raman hyperspectral images near 785 nm of azoformamide in samples were obtained through laser line light source. By preprocessing, selecting the region of interest, data dimensionality reduction and setting an appropriate threshold, the effective distinction between flour and azoformamide signals is realized. The method of image analysis was used to detect the azoformamide doped in samples with gradient concentration. Then the related quantitative analysis model was established. Finally the reliability of the quantitative analysis model is verified by the prediction sets and the correlation coefficient is more than 0.988. This study provides a new method for the detection of powdered food by Raman hyperspectral technology.

关 键 词:拉曼光谱 图像 面粉 偶氮甲酰胺 无损 快速 

分 类 号:S2[农业科学—农业工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象