检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李星原 汪鹏[1] 申牧 李蕾[1] 张琳[1] LI Xingyuan;WANG Peng;SHEN Mu;LI Lei;ZHANG Lin(School of Artificial Intelligence,Beijing University of Posts and Telecommunications,Beijing 100876,China)
出 处:《北京邮电大学学报》2022年第4期19-24,共6页Journal of Beijing University of Posts and Telecommunications
基 金:北京市科学技术委员会项目(Z181100001018035);国家自然科学基金项目(61971056);北京市自然科学基金项目(4192040);教育部信息网络工程研究中心项目。
摘 要:癫痫病相关论文缺乏命名实体识别和关系抽取任务的标注数据,命名实体识别和关系抽取模型无法用常规方法训练。为解决该问题,针对癫痫病相关论文的数据特点,改进了命名实体识别和关系抽取模型,提出利用相近领域的医疗数据和预训练模型构建零资源癫痫病领域命名实体识别和关系抽取模型。评估了现有无监督和半监督模型在癫痫病领域论文数据集上的性能,并针对数据集特征引入域对抗网络和关系判别器,有效地提高了命名实体识别和关系抽取模型的性能。将癫痫患者的脑电特征以视觉模态嵌入知识图谱中,在提高脑电分析可解释性的同时,构建了更加直观的多模态知识图谱。The performance of the existing named entity recognition and relation extraction models would sharply decline due to the lack of a large amount of annotated data for epilepsy-related papers. To solve this issue, a zero-resource named entity recognition and relation extraction model in the epilepsy domain is proposed based on medical data and a pre-training model from similar domains. The performance of the existing unsupervised and semi-supervised models on the epilepsy paper data set isevaluated, and then a domain adversarial network and a relation discriminator are introduced based on the characteristics of the data set to effectively improve the construction effect of the epilepsy domain knowledge graph. Electroencephalography(EEG) features of epilepsy patients are embedded into the knowledge graph in a visual modality. While improving the interpretability of EEG analysis, it builds a more intuitive multi-modal knowledge graph.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15