基于改进GRNN的电离层VTEC误差模型  

Ionospheric VTEC Error Model Based on Improved GRNN

在线阅读下载全文

作  者:简益梅 许承东[1] 王倚文 彭雅奇 JIAN Yi-mei;XU Cheng-dong;WANG Yi-wen;PENG Ya-qi(School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China;Beijing Institute of Spacecraft System Engineering,Beijing 100094,China;China Helicopter Research and Development Institute,Tianjin Helicopter Research and Development Center,Tianjin 300000,China)

机构地区:[1]北京理工大学宇航学院,北京100081 [2]北京空间飞行器总体设计部,北京100094 [3]中国直升机设计研究所天津直升机研发中心,天津300000

出  处:《计算机仿真》2022年第8期45-50,共6页Computer Simulation

摘  要:为进一步改正电离层延迟,在研究分析Klobuchar模型电离层模型的总电子含量误差时发现其存在着一些周期性规律信息。针对这些误差信息,提出了利用K-折交叉验证方法优化广义回归神经网络(generalized regression neural network,GRNN)径向学习速度,并建立基于Klobuchar模型的总电子含量误差补偿模型,对这些误差信息进行预测和补偿。试验结果表明,优化后的误差模型对不同地区和不同季节下电离层电子含量误差具有较好的预报精度和拟合效果。利用该模型对Klobuchar模型进行误差补偿,可将该模型总电子含量预报误差减小32%-90%,提高了改正精度。In order to further correct the ionospheric delay,when studying and analyzing the total electron content error of Klobuchar model ionospheric model,it was found that there are some periodic law information.Aiming at this error information,this paper proposes a K-fold cross-validation method to optimize the radial learning speed of the generalized regression neural network(GRNN),and establish a total electron content error compensation model based on the Klobuchar model to predict and compensate these error information.The simulation results show that the model has good fitting ability and prediction effect on the error model of Klobuchar ionospheric total electron content in different regions and different seasons.Using this model to compensate the Klobuchar can reduce the error of vertical total electron content of the model by 32%-90%and improve the correction accuracy.

关 键 词:电离层延迟 误差补偿 总电子含量 神经网络 

分 类 号:V249.31[航空宇航科学与技术—飞行器设计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象