检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李振乾 池茂儒[1] 蔡吴斌 周亚波 谢雨辰 罗贇[1] LI Zhenqian;CHI Maoru;CAI Wubin;ZHOU Yabo;XIE Yuchen;LUO Yun(State Key Laboratory of Traction Power,Southwest Jiaotong University,Chengdu,Sichuan 610031,China;Center for System Reliability and Safety,University of Electronic Science and Technology,Chengdu,Sichuan 611731,China)
机构地区:[1]西南交通大学牵引动力国家重点实验室,四川成都610031 [2]电子科技大学系统可靠性与安全性研究中心,四川成都611731
出 处:《机车电传动》2022年第4期89-96,共8页Electric Drive for Locomotives
基 金:国家自然科学基金项目(U21A20168)。
摘 要:为研究基于空气弹簧主动控制技术的摆式列车动力学性能,建立了考虑连接管路、附加气室与倾摆阀的非线性空气弹簧垂向模型与摆式列车系统动力学模型。采用多体动力学软件Simpack与数值计算软件Simulink联合仿真的方式研究摆式列车高速通过曲线时的动力学性能,分析了空气弹簧主动控制下抗侧滚扭杆角刚度对车辆倾摆产生的影响,对横向止挡刚度与空气弹簧横向刚度等悬挂参数进行了优化匹配,以保证车辆在曲线上的稳定性。结果表明,采用空气弹簧主动控制技术,能够在不改变转向架结构与线路条件的前提下,降低旅客所承受的未平衡离心加速度,提高车辆曲线通过速度;空气弹簧垂向刚度要与抗侧滚角刚度配合,在满足柔度系数的前提下尽量降低抗侧滚角刚度,以减小倾摆阻力,缓解空气弹簧气压波动;空气弹簧主动控制技术会增大车体与转向架之间的横移量,导致车体碰撞横向止挡。合理的空气弹簧横向刚度与横向止挡刚度匹配能够有效减小车体横移量,避免车辆以较大欠超高状态通过曲线时出现一次蛇行晃车现象,同时有利于车辆曲线通过性能的提高。In order to study the dynamic performance of the tilting train based on the active air spring control technology, a nonlinear vertical model of the air spring and the system dynamics model of the tilting train were established, incorporating the connecting pipeline, the additional air chamber and the tilting valve. The co-simulation of multi-body dynamics software Simpack and numerical calculation software Simulink was applied to explore the dynamic performance of the tilting train running on a curve at a high speed. The influence from angle stiffness of the anti-roll torsion bar on train tilting under the active air spring control was analyzed. The suspension parameters such as the lateral stopper stiffness and lateral stiffness of the air spring were optimized to ensure the running stability of the train on curves. The results show that the active air spring control technology can reduce the unbalanced centrifugal acceleration experienced by passengers and increase the curve negotiation speed without changing the bogie structure and track conditions. The vertical stiffness of the air spring should be well matched with the anti-roll angle stiffness, and the anti-roll angle stiffness should be reduced as far as possible under the premise of meeting the flexibility coefficient, to reduce the tilting resistance and relieve the pressure fluctuation of the air spring. In consideration of the fact that the active air spring control technology causes swaying increase between the carbody and the bogie, resulting in the carbody collision with the lateral stopper, reasonable matching between the lateral stiffness of the air spring and the lateral stopper stiffness can effectively reduce the carbody swaying, avoid hunting instability of the train passing on a curve with a large deficient superelevation, and improve the curve negotiation performance of the train.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222