检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄鸿[1] 唐玉枭 段宇乐 HUANG Hong;TANG Yu-Xiao;DUAN Yu-Le(Key Laboratory of Optoelectronic Technique System of the Ministry of Education,College of Optoelectronic Engineering,Chongqing University,Chongqing 400044)
机构地区:[1]重庆大学光电工程学院光电技术与系统教育部重点实验室,重庆400044
出 处:《自动化学报》2022年第10期2496-2507,共12页Acta Automatica Sinica
基 金:国家自然科学基金(42071302);重庆市基础研究与前沿探索项目(cstc2018jcyjAX0093)资助。
摘 要:大量维数约简(Dimensionality reducion, DR)方法表明保持数据间稀疏特性的同时,确保几何结构的保持能更有效提取出具有鉴别性的特征,为此本文提出一种联合局部几何近邻结构和局部稀疏流形的维数约简方法.该方法首先通过局部线性嵌入方法重构每个样本以保持数据的局部线性关系,同时计算样本邻域内的局部稀疏流形结构,在此基础上通过图嵌入框架保持数据的局部几何近邻结构和稀疏结构,最后在低维嵌入空间中使类内数据尽可能聚集,提取低维鉴别特征,从而提升地物分类性能.在Indian Pines和PaviaU高光谱数据集上的实验结果表明,本文方法相较于传统维数约简方法能明显提高地物的分类性能,总体分类可达到83.02%和91.20%,有利于实际应用.A large number of dimensionality reduction methods show that while maintaining the sparse characteristics between data, ensuring that the geometry is maintained can more effectively extract discriminative features.To address this issue, a dimensionality reduction(DR) method combining joint local geometry neighbor structure and local sparse manifold is proposed. The method first reconstructs each sample by local linear embedding to maintain the local linear relationship, and calculates the local sparse manifold structure in the neighbors. Then the local geometry neighbor structure and sparse manifold structure are maintained by the graph embedding frame. Finally,in the low-dimensional embedded space, the intra-class data is compacted as much as possible, so that the low-dimensional discriminative features are extracted to improve the classification performance. The experimental results on the Indian Pines and PaviaU hyperspectral datasets show that the proposed method can significantly improve the classification precision compared with the traditional DR methods. The overall classification can reach 83.02%and 91.20%, respectively, which is beneficial to practical applications.
关 键 词:高光谱图像 维数约简 稀疏表示 流形学习 协同嵌入
分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.142.53.239