检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:林奕武 林培年 程健燊 LIN Yiwu;LIN Peinian;CHENG Jianshen(School of Financial Mathematics and Statistics,Guangdong University of Finance,Guangdong Guangzhou 510521,China)
机构地区:[1]广东金融学院金融数学与统计学院,广东广州510521
出 处:《河北师范大学学报(自然科学版)》2022年第6期546-554,共9页Journal of Hebei Normal University:Natural Science
基 金:广东省科技创新战略专项资金(pdjh2021b0345);广东金融学院大学生创新创业训练项目(202111540009)。
摘 要:KellerSegel体系在数学生物学、理论物理和工程学等方面都具有广泛应用,是应用数学领域的研究热点问题之一.考虑宏观的非线性Keller Segel趋化模型,利用能量方法,首先构造一个能量表达式,然后运用高维Soblev嵌入不等式和一些微分不等式技巧,推导出能量所满足的一阶微分不等式,最终通过求解该不等式,得到KellerSegel趋化模型爆破时间的下界.将以往的结果由低维空间推广到高维空间.The Keller-Segel system,which has a wide range of applications in mathematical biology,engineering,and theoretical physics,is one of the frontiers of the research in the field of applied mathematics.We consider a macroscopic nonlinear Keller-Segel convergence model and use energy methods in this paper.First,we create an expression of energy.Then we use the high-dimensional Sobolev embedding inequality and some basic differential inequality techniques to derive the first-order differential inequality that the energy satisfies.Finally,we obtain a lower bound on the outbreak time of the Keller-Segel convergence model by solving this inequality.This article can generalize the previous results from low-dimensional space to high-dimensional space.
关 键 词:下界 爆破时间 KellerSegel系统 高维空间 能量表达式
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.116