一类Keller-Segel趋化模型解在高维空间R^(N)(N≥3)的爆破问题  

Blow-up Problems of a Class of Keller-Segel Chemotaxis Models in High-dimensional Space R^(N)(N≥3)

在线阅读下载全文

作  者:林奕武 林培年 程健燊 LIN Yiwu;LIN Peinian;CHENG Jianshen(School of Financial Mathematics and Statistics,Guangdong University of Finance,Guangdong Guangzhou 510521,China)

机构地区:[1]广东金融学院金融数学与统计学院,广东广州510521

出  处:《河北师范大学学报(自然科学版)》2022年第6期546-554,共9页Journal of Hebei Normal University:Natural Science

基  金:广东省科技创新战略专项资金(pdjh2021b0345);广东金融学院大学生创新创业训练项目(202111540009)。

摘  要:KellerSegel体系在数学生物学、理论物理和工程学等方面都具有广泛应用,是应用数学领域的研究热点问题之一.考虑宏观的非线性Keller Segel趋化模型,利用能量方法,首先构造一个能量表达式,然后运用高维Soblev嵌入不等式和一些微分不等式技巧,推导出能量所满足的一阶微分不等式,最终通过求解该不等式,得到KellerSegel趋化模型爆破时间的下界.将以往的结果由低维空间推广到高维空间.The Keller-Segel system,which has a wide range of applications in mathematical biology,engineering,and theoretical physics,is one of the frontiers of the research in the field of applied mathematics.We consider a macroscopic nonlinear Keller-Segel convergence model and use energy methods in this paper.First,we create an expression of energy.Then we use the high-dimensional Sobolev embedding inequality and some basic differential inequality techniques to derive the first-order differential inequality that the energy satisfies.Finally,we obtain a lower bound on the outbreak time of the Keller-Segel convergence model by solving this inequality.This article can generalize the previous results from low-dimensional space to high-dimensional space.

关 键 词:下界 爆破时间 KellerSegel系统 高维空间 能量表达式 

分 类 号:O175.29[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象