检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡月[1] 汪召兵 许飞飞 HU Yue;WANG Zhaobing;XU Feifei(School of Sciences,Zhejiang University of Science and Technology,Hangzhou 310023,Zhejiang,China)
出 处:《浙江科技学院学报》2022年第5期452-457,共6页Journal of Zhejiang University of Science and Technology
基 金:浙江省科技计划项目(2015C33088)。
摘 要:为证明Hirota双线性方法求解一类基于非线性偏微分方程的金融数学模型的有效性,将其用于求解Ivancevic期权定价模型,以探究该模型是否存在孤子解。首先给出Hirota导数的定义与性质,对该模型做有理变换,引入Hirota导数得到模型的双线性形式;其次从较简单的色散关系出发,把偏微分方程转化为一般的常微分方程,逐步推导出方程的解;最后选取适当的参数,研究两类孤子解的动态特征,并结合图像解释模型精确解中参数的意义。本研究结果可为其他类非线性波动方程的求解提供参考。In order to prove effectiveness of the Hirota bilinear method in solving a class of financial mathematical models based on nonlinear partial differential equations,it was used to solve the Ivancevic option pricing model to explore whether the model has soliton solutions.Firstly,definition and properties of the Hirota derivative were expounded,and the model was rationally transformed,obtaining the bilinear form of the model by introducing the Hirota derivative.Secondly,starting from the simple dispersion relation,the partial differential equation was transformed into a general ordinary differential equation,with the solution of the equation being derived step by step.Finally,the dynamic characteristics of two kinds of soliton solutions were targeted by selecting appropriate parameters,accounting for the significance of the parameters in the precise solution of the model in light of images.The results of this study can provide a reference for solving other kinds of nonlinear wave equations.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38