面向高校课程的知识图谱联合嵌入模型研究  被引量:2

Research on the Joint Embedding Model of Knowledge Graphs Oriented to University Curriculums

在线阅读下载全文

作  者:熊余[1] 张宇[2] 阎鸣鹤 蔡婷[1] XIONG Yu;ZHANG Yu;YAN Ming-he;CAI Ting(Development Center of Educational Informationization,Chongqing University of Posts and Telecommunications,Chongqing,China 400065;School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing,China 400065)

机构地区:[1]重庆邮电大学教育信息化研发中心,重庆400065 [2]重庆邮电大学通信与信息工程学院,重庆400065

出  处:《现代教育技术》2022年第11期110-117,共8页Modern Educational Technology

基  金:全国教育科学规划国家一般项目“人工智能与教育深度融合的政策体系研究”(项目编号:BGA210055);重庆市技术创新与应用发展专项重点项目“智能化教育评价关键技术研发与应用”(项目编号:cstc2021jscx-gksbX0059)资助。

摘  要:知识图谱嵌入是构建高效精准知识图谱的基础,但目前大多数知识图谱嵌入方法只注重结构信息,而忽视或未能充分利用实体的背景信息,使得嵌入信息不够准确。为充分利用课程实体中丰富的信息以更好地将知识图谱技术应用于教育场景,文章设计了一种面向高校课程的知识图谱联合嵌入模型,包含结构信息嵌入、目录信息嵌入、语义约束计算、联合嵌入四个模块。之后,文章进行了链接预测实验和实体分类实验,来分别验证该模型的有效性和准确性,实验结果显示:该模型的性能良好;与现有模型相比,该模型嵌入的质量和分类的效果均得到较大提升。最后,文章展望该模型可为面向课程的智能问答、路径推荐、信息检索和数据的可视化交互等下游教育应用提供有力支撑,其研究将加快推动知识与数据驱动的智能化教育落地。The embedment of knowledge graphs is the foundation for the construction of efficient and accurate knowledge graphs.However,most knowledge graph embedding methods only focus on structural information,but neglect or fail to make full use of entity background information,resulting in the inaccuracy of embedding information.In order to make full use of the abundant information in the curriculum entity and better apply the knowledge graph technology to the educational scene,the joint embedding model of knowledge graphs oriented to university curriculums was designed in this paper,which included four modules of structure information embedding,directory information embedding,semantic constraint calculation,and joint embedding.Then,the link prediction experiment and the entity classification experiment were conducted to verify the validity and accuracy of the model.Experimental results showed that the model had good performance,and the embedding quality and the classification effect of this model were greatly improved,as compared with the existing models.Finally,the strong support of the model for downstream education applications such as intelligent question answering,path recommendation,information retrieval and visual interaction of data oriented to curriculums was expected,and the research of this paper could accelerate the implementation of knowledge and data-driven intelligent education.

关 键 词:知识图谱 联合嵌入 高校课程 链接预测 实体分类 

分 类 号:G40-057[文化科学—教育学原理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象