检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宋东鉴 朱冰[1] 赵健[1] 韩嘉懿[1] 刘彦辰[1] Song Dongjian;Zhu Bing;Zhao Jian;Han Jiayi;Liu Yanchen(Jilin University,State Key Laboratory of Automotive Simulation and Control,Changchun 130022)
机构地区:[1]吉林大学,汽车仿真与控制国家重点实验室,长春130022
出 处:《汽车工程》2022年第12期1797-1808,共12页Automotive Engineering
基 金:国家自然科学基金(52172386)资助。
摘 要:本文通过分析驾驶人驾驶行为生成机制,构建了类人行为决策策略(HBDS)。它具有匹配驾驶行为生成机制的策略框架,通过最大熵逆强化学习得到类人奖励函数,并采用玻尔兹曼理性噪声模型建立行为概率与累积奖励的映射关系。通过预期轨迹空间的离散化处理,避免了连续高维空间积分中的维数灾难,并基于统计学规律和安全约束对预期轨迹空间进行压缩和修剪,提升了HBDS采样效率。HBDS在NGSIM数据集上进行训练和测试的结果表明,HBDS能做出符合驾驶人个性化认知特性和行为特征的行为决策。In this paper,a human-like behavior decision-making strategy(HBDS)is established by analyzing drivers’ driving behavior generation mechanism. HBDS has a framework that matches the driving behavior generation mechanism,obtains the human-like reward function through maximum entropy inverse reinforcement learning,and adopts the Boltzman noisily-rational model to build the mapping relationship between behavior probability and its cumulative reward. By discretizing the expected trajectory space,the curse of dimensionality in the integration of continuous high-dimensional space is avoided,and based on statistical law and safety constraint,the expected trajectory space is compressed and pruned,enhancing the sampling efficiency of HBDS. The strategy is trained and tested on NGSIM dataset,and the results show that HBDS can make behavior decisions that conform to the driver’s personalized cognitive and behavioral characteristics.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3