车载双目视觉动态级联修正实时立体匹配网络  

Real-time stereo matching network for vehicle binocular vision based on dynamic cascade correction

在线阅读下载全文

作  者:何国豪 翟涌[1] 龚建伟[1,2] 王羽纯 张曦 HE Guohao;ZHAI Yong;GONG Jianwei;WANG Yuchun;ZHANG Xi(School of Mechanical Engineering,Beijing Institute of Technology,Beijing 100081,China;Chongqing Innovation Center,Beijing Institute of Technology,Chongqing 401120,China)

机构地区:[1]北京理工大学机械与车辆学院,北京100081 [2]北京理工大学重庆创新中心,重庆401120

出  处:《智能系统学报》2022年第6期1145-1153,共9页CAAI Transactions on Intelligent Systems

基  金:国家自然科学基金项目(U19A2083,61703041).

摘  要:针对目前基于双目视觉的高精度立体匹配网络消耗计算资源多、运算时间长、无法用于智能驾驶系统实时导航的问题,本文提出了一种能够满足车载实时性和准确性要求的动态融合双目立体匹配深度学习网络。该网络加入了基于全局深度卷积的注意力模块完成特征提取,减少了网络层数与参数数量;通过动态代价级联融合、多尺度融合以及动态视差结果修复优化3D卷积计算,加速了常用的3D特征融合过程。将训练好的模型部署在车载硬件例如NVIDIA Jetson TX2上,并在公开的KITTI立体匹配数据集上进行测试。实验显示,该方法可以达到与目前公开在排行榜中最好方法相当的运行精度,3像素点误差小于6.58%,并且运行速度小于0.1 s/f,能够达到车载实时使用性能要求。Given the shortcoming of high-precision stereo matching networks based on binocular vision,such as high computing resource consumption,long operating time,and inability to be used in real-time navigation by intelligent driving systems,this study proposes a dynamic fusion stereo matching deep learning network that can meet real-time and accuracy requirements in vehicles.The network includes a global deep convolution-based attention module to complete feature extraction while reducing the number of network layers and parameters and optimizing 3D convolution calculations through dynamic cost cascade fusion,multi-scale fusion,and dynamic disparity change to accelerate the commonly used 3D feature fusion process.The trained model is tested on KITTI Stereo 2015 dataset using onboard hardware such as the NVIDIA Jetson TX2.Experiments show that the method can achieve the same operating accuracy as the state-of-the-art method currently in the leaderboard,3 pixels error is less than 6.58%,and the operating duration is less than 0.1 seconds per frame,meeting real-time performance requirements.

关 键 词:双目视觉 深度学习 立体匹配 视差估计 动态计算 特征融合 车载视觉 

分 类 号:TP29[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象