基于Masreliez-Martin的鲁棒分数阶容积卡尔曼滤波算法及应用  被引量:2

Masreliez-Martin method based robust fractional cubature Kalman filtering algorithm and its applications

在线阅读下载全文

作  者:穆静[1] 严东升[2] 蔡远利[3] 王长元[1] MU Jing;YAN Dongsheng;CAI Yuanli;WANG Changyuan(School of Computer and Science Engineering,Xi’an Technology University,Xi’an 710021,China;Beijing Institute of Space Long March Vehicle,Beijing 100076,China;Faculty of Electronic and Information Engineering,Xi’an Jiaotong University,Xi’an 710049,China)

机构地区:[1]西安工业大学计算机科学与工程学院,陕西西安710021 [2]北京航天长征飞行器研究所,北京100076 [3]西安交通大学电子与信息学部,陕西西安710049

出  处:《系统工程与电子技术》2023年第1期234-240,共7页Systems Engineering and Electronics

基  金:国家自然科学基金(62177037,52072293)资助课题。

摘  要:针对具有非高斯量测噪声的分数阶离散时间非线性系统的状态估计问题,提出一种基于Masreliez-Martin(简称为M-M)方法的鲁棒分数阶容积卡尔曼滤波器。在分数阶离散非线性动态系统基础上,使用三阶容积原则推导了状态预测公式,并使用M-M方法实现状态的量测更新,构成了基于M-M方法的鲁棒分数阶容积卡尔曼跟踪算法。将提出的算法应用到再入目标的状态估计中,仿真结果表明,基于M-M方法的鲁棒分数阶容积卡尔曼滤波器优于分数阶无迹滤波器和分数阶容积卡尔曼滤波器。最后,分析了不同程度的量测污染噪声对鲁棒分数阶容积卡尔曼滤波算法的估计性能影响,验证了所提算法的鲁棒性。Aiming at the state estimation problem of discrete fractional-order nonlinear system with non-Gaussian measurement noise,a robust fractional-order cubature Kalman filter based on the Masreliez-Martin(M-M)method is proposed.Using the third-order cubature rule to derive the state prediction and refining the measurement update using M-M method,the M-M method based robust fractional cubature Kalman filter for the fractional discrete nonlinear dynamic system is derived.The proposed algorithm is applied to state estimation of the re-entry ballistic target.The simulation results show that the M-M method based robust fractional cubature Kalman filter is better than the fractional unscented filter and fractional cubature Kalman filter.Finally,the influence of contaminated measurement noise on the estimation performance of the M-M based robust fractional cubature Kalman filter algorithm is analyzed,and the results show that the proposed algorithm has good effectiveness and robustness.

关 键 词:分数阶微积分 容积卡尔曼滤波器 状态估计 Masreliez-Martin方法 

分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象