基于轻量化网络与嵌入式系统的喷码检测  被引量:5

Detection of Inkjet Code Quality Based on Lightweight Network and Embedded System

在线阅读下载全文

作  者:葛俏 梁桥康[1,2] 邹坤霖 孙炜[1,2] 李珊红[3] 王耀南[1,2] GE Qiao;LIANG Qiao-kang;ZOU Kun-lin;SUN Wei;LI Shan-hong;WANG Yao-nan(College of Electrical and Information Engineering,Hunan University,Changsha 410082,China;National Engineering Research Center for Robot Visual Perception and Control Technology,Hunan University,Changsha 410082,China;School of Advanced Manufacturing Engineering,Hefei University,Hefei 230601,China)

机构地区:[1]湖南大学电气与信息工程学院,湖南长沙410082 [2]湖南大学机器人视觉感知与控制技术国家工程研究中心,湖南长沙410082 [3]合肥学院先进制造工程学院,安徽合肥230601

出  处:《控制工程》2022年第12期2349-2356,共8页Control Engineering of China

基  金:国家自然科学基金资助项目(62073129,U21A20490);湖南省自然科学基金资助项目(2022JJ10020);安徽省自然科学基金资助项目(1808085QF195)。

摘  要:针对食品饮料等复杂包装上喷码质量检测的准确率不高与速度慢等问题,提出了一种基于Ghost-YOLO轻量化网络与嵌入式平台的喷码质量检测方法。网络以YOLOv5为基础,采用了幻影模块(GM)对卷积层进行降维,模型参数减少25%。多分类目标检测任务的后处理采用位置重复抑制(PDS)方法,通过对所有类别同时采用非极大值抑制(NMS),进一步提高检测精度。最后,利用所提出的改进自训练方法对模型进行训练,并将所提检测方法部署于嵌入式设备中,实现了对喷码质量的实时检测。实验结果表明,所提检测方法在满足实时性的要求下,对喷码字符检测的精确度和召回率分别达到了100%和99.99%。Aiming at the shortcomings such as low accuracy and slow speed of quality detection for inkjet codes on the surface of complex packaging in food,beverage and other industries,a detection method for inkjet code quality based on Ghost-YOLO lightweight network and embedded platform is proposed in this paper.The network is originated from YOLOv5.Firstly,Ghost module(GM)is used to shrink the dimension of the convolutional layer,and the model parameters are reduced by 25%.Secondly,the position duplication suppression(PDS)method is used in the post-processing of multi-category object detection task.The detection accuracy is further improved by applying the non-maximum suppression(NMS)to all categories simultaneously.Finally,the proposed improved self-training method is used to train the model,and the proposed detection method is deployed in the embedded device to realize the real-time detection of inkjet code quality.The experimental results show that the precision and recall for code characters reach 100%and 99.99%,respectively.

关 键 词:YOLOv5 幻影模块 目标检测 非极大值抑制 自训练 Jetson TX2 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象