检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张梅[1] 吕乐 陈万利 冯涛 ZHANG Mei;Lü Le;CHEN Wanli;FENG Tao(School of Electrical and Information Engineering,Anhui University of Science and Technology,Huainan 232000,China)
机构地区:[1]安徽理工大学电气与信息工程学院,安徽淮南232000
出 处:《测绘通报》2022年第12期91-96,共6页Bulletin of Surveying and Mapping
基 金:安徽高校自然科学研究(KJ2020A0309)。
摘 要:针对传统超宽带(UWB)室内定位中非线性跟踪问题,基于当前统计(CS)模型和容积卡尔曼滤波(CKF),本文提出了一种新的定位算法。即采用奇异值分解(SVD)代替标准CKF算法中的Cholesky分解,提高了算法的稳定性,构造了奇异值分解容积卡尔曼滤波器(SCKF)。首先在CS模型的基础上改进了先验参数的函数形式,得到改进的CS模型(MCS),实现模型参数的自适应调整;然后将MCS模型引入SCKF滤波器,实现滤波算法的自适应调整;最后利用MCS-SCKF算法对UWB定位系统模型进行解算,从而得到移动目标位置。仿真和试验结果表明,该算法优于CS模型-卡尔曼滤波算法(CS-KF)和CS模型-SCKF算法(CS-SCKF),提高了UWB室内定位的定位精度。Aiming at the nonlinear tracking problem in traditional ultra-wideband(UWB)indoor positioning,this paper proposes a new positioning algorithm based on the current statistical(CS)model and volumetric Kalman filter(CKF).The localization algorithm uses singular value decomposition(SVD)to replace the Cholesky decomposition in the standard CKF algorithm to improve the robustness of the algorithm,constructing a singular value decomposition volumetric Kalman filter(SCKF).The functional form of the test parameters is obtained firstly,and the improved CS model(MCS)is obtained to realize the adaptive adjustment of the model parameters;then the MCS model is introduced into the SCKF filter to realize the adaptive adjustment of the filtering algorithm;finally,the MCS-SCKF algorithm can be used to The UWB positioning system model which is solved to obtain the moving target position.Simulation and experimental results show that the algorithm is superior to CS model-Kalman filter algorithm(CS-KF)and CS model-SCKF algorithm(CS-SCKF),and improves the positioning accuracy of UWB indoor positioning.
关 键 词:UWB 室内定位 容积卡尔曼滤波 当前统计模型 奇异值分解
分 类 号:P237[天文地球—摄影测量与遥感]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.170