检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘瑞峰 孟利清[1] LIU Ruifeng;MENG Liqing(College of Machinery and Transportation,Southwest Forestry University,Kunming 650224,China)
机构地区:[1]西南林业大学机械与交通学院,昆明650224
出 处:《智能计算机与应用》2022年第12期192-195,201,共5页Intelligent Computer and Applications
基 金:云南省教育厅科学研究基金项目(2022Y572)。
摘 要:针对自动驾驶车辆真实行驶场景下因环境复杂,车辆间目标遮挡、环境背景遮挡等导致的车辆检测误检、漏检和定位不准的问题,本文提出了一个改进YOLOv4模型的车辆检测算法。该算法在YOLOv4网络的Backbone与Neck的通道处以及Neck的上采样与下采样处分别添加7处CBAM注意力机制,以提升网络提取有效特征的能力。并利用k-means聚类算法生成适合数据集的锚框。为检验模型的有效性,对数据集进行重新整理与划分,将与车辆无关的种类删去,将Car、Bus、Truck三类合并为Vehicle一类,随后进行实验,并与当前主流的其他目标检测模型进行对比。实验证明,改进的YOLOv4算法比原算法AP提升了4.8%,准确率提升了4.54%,召回率提高了0.9%,优于大部分主流算法。提出的模型为复杂环境下自动驾驶领域的车辆识别提供了有效方法。For the problem of vehicles misdetection,missed detection and inaccurate localization caused by complex environment,inter-vehicle target occlusion and environmental background occlusion in real driving scenarios of autonomous vehicles,a vehicle detection algorithm with improved YOLOv4 model is proposed in this paper.The algorithm adds seven CBAM attention mechanisms at the channels of Backbone,Neck of the YOLOv4 network and at the upsampling and downsampling of Neck,respectively,to improve the ability of the network to extract effective features.And the k-means clustering algorithm is used to generate the anchor frames suitable for the dataset.In order to test the effectiveness of the model,the dataset is rearranged and divided,the categories unrelated to vehicles are deleted,and the three categories of Car,Bus and Truck are combined into one category of Vehicle,then experiments are conducted and compared with other current mainstream target detection models.The experiments demonstrate that the improved YOLOv4 algorithm improves AP by 4.8%,accuracy by 4.54%,and recall by 0.9%over the original algorithm,which is better than most mainstream algorithms.The proposed model provides an effective method for vehicle recognition in the field of autonomous driving in complex environments.
关 键 词:YOLOv4 车辆检测 注意力机制 聚类算法 目标检测
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.115.20