检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘翔宇 孙亮明[1] 夏振兴 LIU Xiangyu;SUN Liangming;XIA Zhenxing(School of Civil Engineering and Architecture,Wuhan University of Technology,Wuhan 430070,China;China Northwest Municipal Engineering Design and Research Institute Co.,Ltd.,Wuhan 430056,China)
机构地区:[1]武汉理工大学土木工程与建筑学院,武汉430070 [2]中国市政工程西北设计研究院有限公司,武汉430056
出 处:《噪声与振动控制》2023年第1期55-61,共7页Noise and Vibration Control
基 金:国家自然科学基金资助项目(51608410);中央高校基本科研业务费资助项目(2019Ⅲ108CG)。
摘 要:为探究弹性类支座对桥梁结构振动机理的影响及进一步发展曲线梁的车致振动理论,提出一种将弹性支承曲线梁振动形式考虑为弯曲变形和刚体位移组合的方法,建立简化计算模型,利用Garlekin法和积分变换法推导移动荷载作用下弹性支承曲线梁的动力响应解析解,并验证本文方法的正确性。通过数值算例分析弹性支承曲线梁在移动荷载作用下的振动机理,以及支座刚度、曲率半径等相关参数对弹性支承曲线梁动力响应的影响规律。研究表明:曲线梁的支座约束情况发生变化会对桥梁结构的动力特性和动力响应造成差异明显的非线性影响,其支座竖向刚度越小,桥梁动力响应越大,不可直接将其简化为刚性支承梁;小半径弹性支承曲线梁与直线梁相比,其曲率半径对桥梁动力响应的放大效应十分显著,同样不可忽略。In order to explore the influence of elastic bearing on the vibration mechanism of bridge structure and develop the vibration theory of curved beam, a simplified calculation model of elastic supported curved beam was established, the analytical solution of dynamic response of elastic supported curved beam under moving load was derived by using Galerkin method and integral transform method, and the correctness of the proposed method was verified. The vibration mechanism of the curved beam with elastic supports under moving load was analyzed by numerical examples, and the influence of some parameters such as bearing stiffness and curvature radius on the dynamic response of the curved beam with elastic supports was analyzed. The results show that the change of the support constraint of the curved beam have an obvious nonlinear impact on the dynamic characteristics and dynamic response of the bridge structure. The smaller the vertical stiffness of the support, the greater the dynamic response of the bridge. Hence, the supports of the curved beam should not be directly simplified as rigid supports. Compared with the straight beam, the amplification effect of the radius of curvature to the dynamic response of the bridge is very significant, which cannot be ignored in design.
关 键 词:振动与波 曲线梁 弹性支承 移动荷载 动力响应 振动机理
分 类 号:O327[理学—一般力学与力学基础] TU997[理学—力学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222