检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙婷婷 刘剑波 任佳丽 钟海雁[1,2] 周波 SUN Tingting;LIU Jianbo;REN Jiali;ZHONG Haiyan;ZHOU Bo(Hunan Key Laboratory of Forestry Edible Sources Safety and Processing,Changsha 410004,China;School of Food Science and Engineering,Central South University of Forestry and Technology,Changsha 410004,China;Food and Drug Inspection Institute of Yueyang City Inspection and Testing Center,Yueyang 414000,Hunan,China)
机构地区:[1]林产可食资源安全与加工利用湖南省重点实验室,长沙410004 [2]中南林业科技大学食品科学与工程学院,长沙410004 [3]岳阳市检验检测中心食品药品检验所,湖南岳阳414000
出 处:《中国油脂》2023年第1期66-73,共8页China Oils and Fats
基 金:湖南省市场监督管理局科技计划项目(2020KJJH55);湖南省林业科技创新基金项目(XLK202101-02);中央引导地方科技发展专项资金区域创新体系建设专项(2020ZYQ036)。
摘 要:为解决油茶籽油掺伪其他植物油的定性鉴别问题,在油茶籽油中分别掺入大豆油、花生油、葵花籽油、棉籽油、葡萄籽油、菜籽油、棕榈油和米糠油,设置高和低两种不同掺伪梯度,基于14个特征性脂肪酸和甘油三酯指标,运用Python语言构建并对比分析了二分类决策树模型、多分类决策树模型和多层感知机人工神经网络(MLP-ANN)模型用于油茶籽油掺伪定性鉴别的效果。结果表明:高和低掺伪梯度下,二分类决策树模型对油茶籽油掺伪其他植物油的定性鉴别的准确率均达到0.95以上;多分类决策树模型的精确率和准确率在高掺伪梯度下均达到了0.95,但在低掺伪梯度下仅为0.90;在高和低掺伪梯度下,MLP-ANN模型对油茶籽油掺伪定性鉴别的平均精确率均达到0.98,准确率分别达到0.97和0.98。相比于决策树模型,MLP-ANN模型能很好地实现油茶籽油掺伪定性鉴别。In order to solve the qualitative identification problem of adulterated oil-tea camellia seed oil with other vegetable oils, soybean oil, peanut oil, sunflower seed oil, cottonseed oil, grape seed oil, rapeseed oil, palm oil and rice bran oil were mixed into oil-tea camellia seed oil respectively, two different adulteration gradients of high and low were set up, and based on characteristic fatty acid and triglyceride indicators, the effects of the binary decision tree model, multi-classification decision tree model and multilayer perceptron artificial neural network(MLP-ANN) model for qualitative identification of adulterated oil-tea camellia seed oil were compared and analysed using Python language. The results showed that the accuracy of the binary decision tree model for qualitative identification of oil-tea camellia seed oil adulterated with other vegetable oils under high and low adulteration gradients was above 0.95. The accuracy and precision of the multi-classification decision tree model reached 0.95 at high adulteration gradient, but only 0.90 at low adulteration gradient. Under high and low adulteration gradients, the average precision of MLP-ANN model for qualitative identification of adulterated oil-tea camellia seed oil reached 0.98, and the accuracy reached 0.97 and 0.98 respectively. Compared with the decision tree model, the MLP-ANN model can well realize the qualitative identification of adulterated oil-tea camellia seed oil.
关 键 词:油茶籽油 决策树模型 多层感知机人工神经网络模型 定性鉴别 脂肪酸 甘油三酯
分 类 号:TS227[轻工技术与工程—粮食、油脂及植物蛋白工程] O657[轻工技术与工程—食品科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.201.49