矩阵Hadamard积和乘积的若干范数不等式  

Some Norm Inequalities for Hadamard Products and Conventional Products of Matrices

在线阅读下载全文

作  者:黄倩悦 张云[1] HUANG Qianyue;ZHANG Yun(School of Mathematical Sciences,Huaibei Normal University,235000,Huaibei,Anhui,China)

机构地区:[1]淮北师范大学数学科学学院,安徽淮北235000

出  处:《淮北师范大学学报(自然科学版)》2023年第1期21-26,共6页Journal of Huaibei Normal University:Natural Sciences

基  金:安徽省高校自然科学研究重大项目(KJ2021ZD0058);安徽省自然科学基金项目(1708085QA05)。

摘  要:文章研究矩阵Hadamard积及普通乘积的酉不变范数与谱范数的不等式。利用分块矩阵的技巧及矩阵特征值的优超理论,得到一系列关于矩阵乘积和Hadamard积的范数不等式,改进Zhan的一个结果,同时推广关于Horn和Mathias的矩阵酉不变范数的Cauchy-Schwarz不等式。Some inequalities of the unitary invariant norm and spectral norm on Hadamard products and conventional products of matrices are studied. By applying the techniques of block matrices,and the majorization theory of matrix eigenvalues,a series of norm inequalities for Hadamard products and conventional products of matrices are obtained. Among them,the result due to Zhan is improved by obtaining some inequalities.Meanwhile,this paper also gives a generalization of Cauchy-Schwarz inequality for the unitary invariant norm due to Horn and Mathias.

关 键 词:酉不变范数 HADAMARD积 CAUCHY-SCHWARZ不等式 

分 类 号:O151.21[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象