检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:唐少强[1] TANG Shaoqiang(Department of Mechanics and Engineering Sciences,Peking University,Beijing 100871,China)
出 处:《力学与实践》2023年第1期150-156,共7页Mechanics in Engineering
基 金:北京大学基础学科拔尖人才培养计划2.0项目,国家自然科学基金(11988102,11832001)资助。
摘 要:本文从线性空间出发,介绍了线性泛函与对偶空间,在此基础上以双线性型为例引出了张量的数学定义-多线性泛函;另一方面,内积作为一种特殊的双线性型给予向量另一种身份:余向量,由此通过限定定义张量的线性空间都取为Rn(n=2,3),就得到了(连续介质)力学中常用的张量,即在基变换下坐标(或称分量)按照给定规则变化的量。进一步给出了张量的张量积、缩并、点积和双点积运算。Linear space, linear functional and dual space are introduced. Based on this, tensor is defined mathematically as a multilinear functional, with bilinear form as an example. In addition, as a special case of bilinear form, inner product renders a co-vector interpretation of vector itself. Now setting all the linear spaces that vectors and co-vectors reside as Rn(n = 2, 3)the theory of continuum, viz, an entity that changes its coordinates/components according to certain given rules under coordinate transform of Rn. Tensor product, contraction, dot product and double dot product are also explained.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.133.145.211