检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李振亮 李波[2] LI Zhenliang;LI Bo(Faculty of Electronics and Information Engineering,Xi’an Jiaotong University,Xi’an Shaanxi 710049,China;Computer Teaching&Experiment Center,Xi’an Jiaotong University,Xi’an Shaanxi 710049,China)
机构地区:[1]西安交通大学电子与信息学部,西安710049 [2]西安交通大学计算机教学实验中心,西安710049
出 处:《计算机应用》2023年第3期685-691,共7页journal of Computer Applications
摘 要:针对传统卷积神经网络(CNN)在训练过程中优化难度高的问题,提出基于矩阵分解的CNN改进方法。首先,通过矩阵分解将模型卷积层在训练期间的卷积核参数张量转换为多个参数矩阵的乘积,形成过参数化;其次,将这些额外的线性参数加入网络的反向传播,并与模型的其他参数同步更新,以改善梯度下降的优化过程;完成训练后,将矩阵乘积重新还原为标准卷积核参数,从而使推理期间前向传播的计算复杂度与改进前保持一致。选用简化QR分解和简化奇异值分解(SVD),在CIFAR-10数据集上进行分类效果实验,并用不同的图像分类数据集和初始化方式作进一步的泛化实验。实验结果表明,基于矩阵分解的VGG和残差网络(ResNet)对7个不同深度模型的分类准确率均高于原网络模型,可见矩阵分解方法可以让CNN更快地达到较高的分类准确率,最终收敛得到更好的局部最优。Aiming at the difficulty of optimizing the traditional Convolutional Neural Network(CNN)in the training process,an improved method of CNN based on matrix decomposition was proposed.Firstly,the convolution kernel parameter tensor of the model convolution layer during training was converted into the product of multiple parameter matrices through matrix decomposition to form overparameterization.Secondly,these additional linear parameters were added to the back propagation of the network and updated synchronously with other parameters of the model to improve the optimization process of gradient descent.After completing the training,the matrix product was restored to the standard convolution kernel parameters,so that the computational complexity of forward propagation during inference was able to be the same as before the improvement.With thin QR decomposition and reduced Singular Value Decomposition(SVD)applied,the classification effect experiments were carried out on CIFAR-10(Canadian Institute For Advanced Research,10 classes)dataset,and further generalization experiments were carried out by using different image classification datasets and different initialization methods.Experimental results show that the classification accuracies of 7 models of different depths of Visual Geometry Group(VGG)and Residual Network(ResNet)based on matrix decomposition are higher than those of the original convolutional neural network models.It can be seen that the matrix decomposition method can make CNN achieve higher classification accuracy,and eventually converge to a better local optimum.
关 键 词:卷积神经网络 矩阵分解 奇异值分解 过参数化 图像分类
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222