具有未知函数非线性系统的全局渐近稳定控制  被引量:1

Global asymptotic stability control for nonlinear systems with unknown functions

在线阅读下载全文

作  者:贾付金 张天良 JIA Fu-jin;ZHANG Tian-liang(School of Electrical Engineering and Automation,Anhui University,Hefei Anhui 230039,China;School of Automation,Nanjing University of Science and Technology,Nanjing,Jiangsu 210094,China)

机构地区:[1]安徽大学电气工程与自动化学院,安徽合肥230039 [2]南京理工大学自动化学院,江苏南京210094

出  处:《控制理论与应用》2023年第2期196-203,共8页Control Theory & Applications

基  金:江苏省研究生科研与实践创新计划项目(KYCX210305)资助。

摘  要:本文讨论了一类具有未知函数和未知控制方向非线性系统的全局渐近稳定问题.通过提出一个引理处理未知函数问题,从而得到了一种基于反步法和Nussbaum增益技术的全局渐近稳定控制算法.与逼近方法处理未知函数的算法相比,本文提出的算法解决了非线性系统的全局渐近稳定问题;与现存解决非线性系统的全局渐近稳定控制算法相比,本文避免了使用未知函数的假设条件,因此降低了保守性.值得一提的是本文的算法也解决了反步法的“微分爆炸”问题,因此所提出的控制方案不仅仅得到了全局渐近稳定控制方案,而且降低了计算的复杂性.最后,将该方案应用到刚性单链杆机械手系统中,仿真结果验证了其有效性.In this paper,the global asymptotic stability of a class of nonlinear systems with unknown functions and unknown control directions is discussed.A lemma is proposed to deal with the unknown functions problem,and a global asymptotic stability control algorithm based on the backstepping and Nussbaum gain technology is obtained.Compared with the algorithms dealing with unknown functions by approximation method,the algorithm proposed in this paper solves the problem of global asymptotic stability of nonlinear systems.Compared with the existing global asymptotic stability control algorithms for nonlinear systems,this paper avoids the assumptions of unknown functions,so the method in this paper reduces the conservatism.It is worth mentioning that the algorithm in this paper also solves the“explosion of terms”problem of backstepping.Therefore,the algorithm in this paper not only obtains the global asymptotic stability control scheme,but also has simple calculation.Finally,the algorithm is applied to the rigid single link manipulator system,and the simulation results verify the effectiveness of the control scheme.

关 键 词:非线性系统 渐近稳定 反步法 状态反馈 

分 类 号:TP13[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象