检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘望生[1] 潘海鹏[1] 王明环[2] LIU Wang-sheng;PAN Hai-peng;WANG Ming-huan(School of Mechanical Engineering and Automation,Zhejiang Sci-Tech University,Hangzhou Zhejiang 310018,China;Key Laboratory of Special Purpose Equipment and Advanced Processing Technology,Ministry of Education,Zhejiang University of Technology,Hangzhou Zhejiang 310012,China)
机构地区:[1]浙江理工大学机械与自动控制学院,浙江杭州310018 [2]浙江工业大学特种装备制造与先进加工技术教育部重点实验室,浙江杭州310012
出 处:《控制理论与应用》2023年第3期477-484,共8页Control Theory & Applications
基 金:国家自然科学基金项目(51975532)资助。
摘 要:针对混响噪声下声源定位精度低和鲁棒性弱等问题,提出了多特征自适应IMM粒子滤波算法.该算法以麦克风接收信号的多特征作为观测信息,采用空时相关和迭代滤波建立了时延选择机制和波束输出能量优化机制,并在两者的基础上构建了似然函数以获得合理的声源位置信息.考虑到说话人运动的随机性,给出了自适应IMM算法,通过在线粒子集生成并将不同过程方差的模型进行交互来拟合说话人的不同运动模式,改善了说话人跟踪系统的稳健性.仿真和实测结果表明,所提算法利用了多特征定位信息的互补性,降低了观测误差不确定性对声源位置估计的影响,增强了随机运动声源跟踪系统的鲁棒性,提高了系统的定位精度.To deal with the problems of low accuracy and weak robustness of sound source localization in reverberant and noisy environments,an adaptive IMM particle filter algorithm based on the multi-feature is proposed.In this algorithm,the mechanisms of time delay selection and beam output energy optimization are established,by using the space-time correlation and iterative filtering,where the multi-features of the signals received by the microphones are exploited as the observation information.Subsequently,the reasonable sound source position information is obtained from the likelihood function,which is constructed on the basis of both.Meanwhile,considering the randomness of speaker motion,an adaptive IMM algorithm is given.By generating online particle set and interacting the models with different process variances,the speaker’s different motion modes are fitted,which improves the robustness of the speaker tracking system.The simulation and experimental results show that the complementarity of the location information based on the multi-feature is employed in the proposed algorithm,and the influence of the uncertainty of the observation error on sound source position estimation is reduced.Simultaneously,the robustness of random moving sound source tracking system is enhanced and the positioning accuracy of the system is improved.
关 键 词:声源定位 粒子滤波 多特征 室内混响 麦克风阵列 交互式多模型
分 类 号:TN713[电子电信—电路与系统] TN912.3
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.70